These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 29448652)

  • 21. Application of Nanofluids in Improving the Performance of Double-Pipe Heat Exchangers-A Critical Review.
    Louis SP; Ushak S; Milian Y; Nemś M; Nemś A
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids.
    Agromayor R; Cabaleiro D; Pardinas AA; Vallejo JP; Fernandez-Seara J; Lugo L
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermohydraulic performance investigation of a heat exchanger with combined effect of ribbed insert and Therminol55/MXene+ Al
    Das L; Aslfattahi N; Habib K; Saidur R; Das A; Kadirgama K
    Heliyon; 2023 Mar; 9(3):e14283. PubMed ID: 36942246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes.
    Cieslinski JT; Kaczmarczyk TZ
    Nanoscale Res Lett; 2011 Mar; 6(1):220. PubMed ID: 21711741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CFD analysis on heat and flow characteristics of double helically coiled tube heat exchanger handling MWCNT/water nanofluids.
    Mukesh Kumar PC; Chandrasekar M
    Heliyon; 2019 Jul; 5(7):e02030. PubMed ID: 31388569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparisons of Numerical and Experimental Investigations of the Thermal Performance of Al
    Ajeeb W; Murshed SMS
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Forced Convective Heat Transfer Coefficient Measurement of Low Concentration Nanorods ZnO-Ethylene Glycol Nanofluids in Laminar Flow.
    Alam MS; Nahar B; Gafur MA; Seong G; Hossain MZ
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Comparison of Empirical Correlations of Viscosity and Thermal Conductivity of Water-Ethylene Glycol-Al
    Sawicka D; Cieśliński JT; Smolen S
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32751158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of Forced Convection Enhancement and Entropy Generation of Nanofluid Flow through a Corrugated Minichannel Filled with a Porous Media.
    Aminian E; Moghadasi H; Saffari H; Gheitaghy AM
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental Investigation of Thermal and Pressure Performance in Computer Cooling Systems Using Different Types of Nanofluids.
    Alfaryjat A; Miron L; Pop H; Apostol V; Stefanescu MF; Dobrovicescu A
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation, Stability and Thermal Characteristic of Al₂O₃/Bio-Oil Based Nanofluids for Heat Transfer Applications.
    Umar S; Sulaiman F; Abdullah N; Mohamad SN
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7569-7576. PubMed ID: 32711628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of additives and nanoparticles on falling film absorption performance of binary nanofluids (H2O/LiBr + nanoparticles).
    Lee JK; Kim H; Kim MH; Koo J; Kang YT
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7456-60. PubMed ID: 19908808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat transfer performance of Al2O3/water nanofluids in a mini channel heat sink.
    Dominic A; Sarangan J; Suresh S; Sai M
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2368-76. PubMed ID: 24745233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating control of convective heat transfer and flow resistance of Fe
    Gao D; Bai M; Hu C; Lv J; Wang C; Zhang X
    Nanotechnology; 2020 Dec; 31(49):495402. PubMed ID: 32946425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical investigation of heat transfer enhancement in a rectangular heated pipe for turbulent nanofluid.
    Yarmand H; Gharehkhani S; Kazi SN; Sadeghinezhad E; Safaei MR
    ScientificWorldJournal; 2014; 2014():369593. PubMed ID: 25254236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heat Transfer and Entropy Generation Abilities of MWCNTs/GNPs Hybrid Nanofluids in Microtubes.
    Hussien AA; Abdullah MZ; Yusop NM; Al-Kouz W; Mahmoudi E; Mehrali M
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of nanoparticle migration on forced convective heat transfer of nanofluid under heating and cooling regimes.
    Kozlova SV; Ryzhkov II
    Eur Phys J E Soft Matter; 2014 Sep; 37(9):43. PubMed ID: 25260328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Thermal Performance Analysis of an Al
    Baig MF; Chen GM; Tso CP
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heat Transfer Enhancement by Hybrid Nano Additives-Graphene Nanoplatelets/Cellulose Nanocrystal for the Automobile Cooling System (Radiator).
    Yaw CT; Koh SP; Sandhya M; Kadirgama K; Tiong SK; Ramasamy D; Sudhakar K; Samykano M; Benedict F; Tan CH
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple economic and heat transfer analysis of the nanoparticles use.
    Wciślik S
    Chem Zvesti; 2017; 71(12):2395-2401. PubMed ID: 29104354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.