These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 29448784)

  • 1. Dirac cone in two dimensional bilayer graphene by intercalation with V, Nb, and Ta transition metals.
    Pakhira S; Lucht KP; Mendoza-Cortes JL
    J Chem Phys; 2018 Feb; 148(6):064707. PubMed ID: 29448784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of thermal and electronic properties of bilayer graphene by using slow Na
    Ryu M; Lee P; Kim J; Park H; Chung J
    Nanotechnology; 2016 Dec; 27(48):485704. PubMed ID: 27796276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sizable Band Gap in Epitaxial Bilayer Graphene Induced by Silicene Intercalation.
    Guo H; Zhang R; Li H; Wang X; Lu H; Qian K; Li G; Huang L; Lin X; Zhang YY; Ding H; Du S; Pantelides ST; Gao HJ
    Nano Lett; 2020 Apr; 20(4):2674-2680. PubMed ID: 32125162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin-polarized Fermi surface, hole-doping and band gap in graphene with boron impurities.
    Fedorov AV; Yashina LV; Vilkov OY; Laubschat C; Vyalikh DV; Usachov DY
    Nanoscale; 2018 Dec; 10(48):22810-22817. PubMed ID: 30488051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-coverage stable structures of 3d transition metal intercalated bilayer graphene.
    Liao JH; Zhao YJ; Tang JJ; Yang XB; Xu H
    Phys Chem Chem Phys; 2016 Jun; 18(21):14244-51. PubMed ID: 27167998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of 3
    Wu F; Wang Z; He J; Li Z; Meng L; Zhang X
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating the electronic and magnetic properties of bilayer borophene via transition metal atoms intercalation: from metal to half metal and semiconductor.
    Zhang X; Sun Y; Ma L; Zhao X; Yao X
    Nanotechnology; 2018 Jul; 29(30):305706. PubMed ID: 29738311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Twist Angle-Dependent Molecular Intercalation and Sheet Resistance in Bilayer Graphene.
    Araki Y; Solís-Fernández P; Lin YC; Motoyama A; Kawahara K; Maruyama M; Gao Y; Matsumoto R; Suenaga K; Okada S; Ago H
    ACS Nano; 2022 Sep; 16(9):14075-14085. PubMed ID: 35921093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structures of an epitaxial graphene monolayer on SiC(0001) after gold intercalation: a first-principles study.
    Chuang FC; Lin WH; Huang ZQ; Hsu CH; Kuo CC; Ozolins V; Yeh V
    Nanotechnology; 2011 Jul; 22(27):275704. PubMed ID: 21597151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dirac fermions in strongly bound graphene systems.
    Li Y; Chen P; Zhou G; Li J; Wu J; Gu BL; Zhang SB; Duan W
    Phys Rev Lett; 2012 Nov; 109(20):206802. PubMed ID: 23215516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic and magnetic properties of honeycomb transition metal monolayers: first-principles insights.
    Li X; Dai Y; Ma Y; Huang B
    Phys Chem Chem Phys; 2014 Jul; 16(26):13383-9. PubMed ID: 24879520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-Orbit Coupling Induced Gap in Graphene on Pt(111) with Intercalated Pb Monolayer.
    Klimovskikh II; Otrokov MM; Voroshnin VY; Sostina D; Petaccia L; Di Santo G; Thakur S; Chulkov EV; Shikin AM
    ACS Nano; 2017 Jan; 11(1):368-374. PubMed ID: 28005333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct observation of Dirac cone in multilayer silicene intercalation compound CaSi2.
    Noguchi E; Sugawara K; Yaokawa R; Hitosugi T; Nakano H; Takahashi T
    Adv Mater; 2015 Feb; 27(5):856-60. PubMed ID: 25502913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles investigation of bilayer graphene with intercalated C, N or O atoms.
    Gong SJ; Sheng W; Yang ZQ; Chu JH
    J Phys Condens Matter; 2010 Jun; 22(24):245502. PubMed ID: 21393783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molybdenum Chloride Nanostructures with Giant Lattice Distortions Intercalated into Bilayer Graphene.
    Liu Q; Lin YC; Kretschmer S; Ghorbani-Asl M; Solís-Fernández P; Siao MD; Chiu PW; Ago H; Krasheninnikov AV; Suenaga K
    ACS Nano; 2023 Dec; 17(23):23659-23670. PubMed ID: 38007700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new Dirac cone material: a graphene-like Be
    Wang B; Yuan S; Li Y; Shi L; Wang J
    Nanoscale; 2017 May; 9(17):5577-5582. PubMed ID: 28406258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of the Dirac states of graphene by intercalating two-dimensional traditional semiconductors.
    Gao Y; Zhang YY; Du S
    J Phys Condens Matter; 2019 May; 31(19):194001. PubMed ID: 30736029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and electronic properties of bilayer graphene functionalized with half-sandwiched transition metal-cyclopentadienyl complexes.
    Yao X; Zhang X; Ye X; Wang J
    Phys Chem Chem Phys; 2016 Aug; 18(32):22390-8. PubMed ID: 27464257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery and local-variation of Dirac cones in oxygen-intercalated graphene on Ru(0001) studied using scanning tunneling microscopy and spectroscopy.
    Jang WJ; Kim H; Jeon JH; Yoon JK; Kahng SJ
    Phys Chem Chem Phys; 2013 Oct; 15(38):16019-23. PubMed ID: 23958746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.