BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 29448887)

  • 1. Fabrication of iron oxide nanocolloids using metallosurfactant-based microemulsions: antioxidant activity, cellular, and genotoxicity toward Vitis vinifera.
    Kaur G; Dogra V; Kumar R; Kumar S; Singh K
    J Biomol Struct Dyn; 2019 Mar; 37(4):892-909. PubMed ID: 29448887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA interaction, anti-proliferative effect of copper oxide nanocolloids prepared from metallosurfactant based microemulsions acting as precursor, template and reducing agent.
    Kaur G; Dogra V; Kumar R; Kumar S; Bhanjana G; Dilbaghi N; Singhal NK
    Int J Pharm; 2018 Jan; 535(1-2):95-105. PubMed ID: 29102701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro assessment of antimicrobial and genotoxic effect of metallosurfactant based nickel hydroxide nanoparticles against Escherichia coli and its genomic DNA.
    Dogra V; Kaur G; Kaur A; Kumar R; Kumar S
    Colloids Surf B Biointerfaces; 2018 Oct; 170():99-108. PubMed ID: 29894838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bactericidal effects of metallosurfactants based cobalt oxide/hydroxide nanoparticles against Staphylococcus aureus.
    Dogra V; Kaur G; Jindal S; Kumar R; Kumar S; Singhal NK
    Sci Total Environ; 2019 Sep; 681():350-364. PubMed ID: 31117016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity assessment of palladium oxide nanoparticles derived from metallosurfactants using multi assay techniques in Allium sativum.
    Dogra V; Kaur G; Kumar R; Kumar S
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110752. PubMed ID: 31911039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity profiling of metallosurfactant based ruthenium and ruthenium oxide nanoparticles towards the eukaryotic model organism Saccharomyces cerevisiae.
    Dogra V; Kaur G; Kumar R; Kumar S
    Chemosphere; 2021 May; 270():128650. PubMed ID: 33131730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract.
    Aksu Demirezen D; Yıldız YŞ; Yılmaz Ş; Demirezen Yılmaz D
    J Biosci Bioeng; 2019 Feb; 127(2):241-245. PubMed ID: 30348486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of surfactants on the magnetic properties of iron oxide colloids.
    Soares PI; Alves AM; Pereira LC; Coutinho JT; Ferreira IM; Novo CM; Borges JP
    J Colloid Interface Sci; 2014 Apr; 419():46-51. PubMed ID: 24491328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coating-dependent induction of cytotoxicity and genotoxicity of iron oxide nanoparticles.
    Magdolenova Z; Drlickova M; Henjum K; Rundén-Pran E; Tulinska J; Bilanicova D; Pojana G; Kazimirova A; Barancokova M; Kuricova M; Liskova A; Staruchova M; Ciampor F; Vavra I; Lorenzo Y; Collins A; Rinna A; Fjellsbø L; Volkovova K; Marcomini A; Amiry-Moghaddam M; Dusinska M
    Nanotoxicology; 2015 May; 9 Suppl 1():44-56. PubMed ID: 24228750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Papaver somniferum L. mediated novel bioinspired lead oxide (PbO) and iron oxide (Fe
    Muhammad W; Khan MA; Nazir M; Siddiquah A; Mushtaq S; Hashmi SS; Abbasi BH
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109740. PubMed ID: 31349401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.
    Habibi N
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():359-62. PubMed ID: 24566114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines.
    Sulaiman GM; Tawfeeq AT; Naji AS
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1215-1229. PubMed ID: 28826240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Annealing effects on 5 nm iron oxide nanoparticles.
    Vargas JM; Lima E; Socolovsky LM; Knobel M; Zanchet D; Zysler RD
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3313-7. PubMed ID: 18019166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure control of iron hydroxide nanoparticles using surfactants with different molecular structures.
    Iijima M; Yonemochi Y; Tsukada M; Kamiya H
    J Colloid Interface Sci; 2006 Jun; 298(1):202-8. PubMed ID: 16386266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound Assisted Green Synthesis of Silver and Iron Oxide Nanoparticles Using Fenugreek Seed Extract and Their Enhanced Antibacterial and Antioxidant Activities.
    Deshmukh AR; Gupta A; Kim BS
    Biomed Res Int; 2019; 2019():1714358. PubMed ID: 31080808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitis vinifera peel and seed gold nanoparticles exhibit chemopreventive potential, antioxidant activity and induce apoptosis through mutant p53, Bcl-2 and pan cytokeratin down-regulation in experimental animals.
    Nirmala JG; Narendhirakannan RT
    Biomed Pharmacother; 2017 May; 89():902-917. PubMed ID: 28292018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: Characterization, antibacterial and antioxidant activity.
    Mirza AU; Kareem A; Nami SAA; Khan MS; Rehman S; Bhat SA; Mohammad A; Nishat N
    J Photochem Photobiol B; 2018 Aug; 185():262-274. PubMed ID: 29981488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant efficacy of chitosan/graphene functionalized superparamagnetic iron oxide nanoparticles.
    Hastak V; Bandi S; Kashyap S; Singh S; Luqman S; Lodhe M; Peshwe DR; Srivastav AK
    J Mater Sci Mater Med; 2018 Sep; 29(10):154. PubMed ID: 30269256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive determination of DNA oxidation products by gas chromatography-tandem mass spectrometry and the role of antioxidants in the prevention of oxidative damage.
    Dawbaa S; Aybastıer Ö; Demir C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Apr; 1051():84-91. PubMed ID: 28334650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of sodium oleate as a buffer on the synthesis of superparamagnetic magnetite colloids.
    Jiang W; Wu Y; He B; Zeng X; Lai K; Gu Z
    J Colloid Interface Sci; 2010 Jul; 347(1):1-7. PubMed ID: 20413125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.