These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 29449114)

  • 1. Role of rain intensity and soil colloids in the retention of surfactant-stabilized silver nanoparticles in soil.
    Makselon J; Siebers N; Meier F; Vereecken H; Klumpp E
    Environ Pollut; 2018 Jul; 238():1027-1034. PubMed ID: 29449114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric flow field-flow fractionation of manufactured silver nanoparticles spiked into soil solution.
    Koopmans GF; Hiemstra T; Regelink IC; Molleman B; Comans RN
    J Chromatogr A; 2015 May; 1392():100-9. PubMed ID: 25798868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil.
    Liang Y; Bradford SA; Simunek J; Heggen M; Vereecken H; Klumpp E
    Environ Sci Technol; 2013; 47(21):12229-37. PubMed ID: 24106877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and Numerical Investigations of Silver Nanoparticle Transport under Variable Flow and Ionic Strength in Soil.
    Makselon J; Zhou D; Engelhardt I; Jacques D; Klumpp E
    Environ Sci Technol; 2017 Feb; 51(4):2096-2104. PubMed ID: 28177254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of engineered silver (Ag) nanoparticles through partially fractured sandstones.
    Neukum C; Braun A; Azzam R
    J Contam Hydrol; 2014 Aug; 164():181-92. PubMed ID: 24992708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic evaluation of Flow Field Flow Fractionation and single-particle ICP-MS to obtain the size distribution of organo-mineral iron oxyhydroxide colloids.
    Moens C; Waegeneers N; Fritzsche A; Nobels P; Smolders E
    J Chromatogr A; 2019 Aug; 1599():203-214. PubMed ID: 31047657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of aqueous food simulants on potential nanoparticle detection in migration studies involving nanoenabled food-contact substances.
    Addo Ntim S; Thomas TA; Noonan GO
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 May; 33(5):905-12. PubMed ID: 27049753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter.
    Adrian YF; Schneidewind U; Bradford SA; Šimůnek J; Klumpp E; Azzam R
    Environ Pollut; 2019 Dec; 255(Pt 1):113124. PubMed ID: 31622956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size and mass determination of silver nanoparticles in an aqueous matrix using asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometer and ultraviolet-visible detectors.
    Geiss O; Cascio C; Gilliland D; Franchini F; Barrero-Moreno J
    J Chromatogr A; 2013 Dec; 1321():100-8. PubMed ID: 24238704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence on enhanced transport and release of silver nanoparticles by colloids in soil due to modification of grain surface morphology and co-transport.
    Liang Y; Luo Y; Lu Z; Klumpp E; Shen C; Bradford SA
    Environ Pollut; 2021 May; 276():116661. PubMed ID: 33592438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-based speciation of natural colloidal particles by flow field flow fractionation, inductively coupled plasma-mass spectroscopy, and transmission electron microscopy/X-ray energy dispersive spectroscopy: colloids-trace element interaction.
    Baalousha M; Kammer FV; Motelica-Heino M; Baborowski M; Hofmeister C; Le Coustumer P
    Environ Sci Technol; 2006 Apr; 40(7):2156-62. PubMed ID: 16646447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impacts of input concentration, grain size and flow rate.
    Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z
    Water Res; 2017 Dec; 127():86-95. PubMed ID: 29035769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-dispersible colloids facilitate the release of potentially toxic elements from contaminated soil under simulated long-term acid rain.
    Liu J; Shi L; Du Y; Luo X; Hu P; Wu L; Luo Y; Christie P
    Sci Total Environ; 2024 Feb; 911():168682. PubMed ID: 37996035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of stabilized engineered silver (Ag) nanoparticles through porous sandstones.
    Neukum C; Braun A; Azzam R
    J Contam Hydrol; 2014 Mar; 158():1-13. PubMed ID: 24389393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS.
    Loeschner K; Navratilova J; Købler C; Mølhave K; Wagner S; von der Kammer F; Larsen EH
    Anal Bioanal Chem; 2013 Oct; 405(25):8185-95. PubMed ID: 23887279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new test system for unraveling the effects of soil components on the uptake and toxicity of silver nanoparticles (NM-300K) in simulated pore water.
    McKee MS; Köser J; Focke O; Filser J
    Sci Total Environ; 2019 Jul; 673():613-621. PubMed ID: 30999102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring the Fate and Transformation of Silver Nanoparticles in Natural Waters.
    Furtado LM; Bundschuh M; Metcalfe CD
    Bull Environ Contam Toxicol; 2016 Oct; 97(4):449-55. PubMed ID: 27437947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fate of silver nanoparticles in riverbank filtration systems - The role of biological components and flow velocity.
    Degenkolb L; Leuther F; Lüderwald S; Philippe A; Metreveli G; Amininejad S; Vogel HJ; Kaupenjohann M; Klitzke S
    Sci Total Environ; 2020 Jan; 699():134387. PubMed ID: 31670213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection.
    Loeschner K; Navratilova J; Grombe R; Linsinger TP; Købler C; Mølhave K; Larsen EH
    Food Chem; 2015 Aug; 181():78-84. PubMed ID: 25794724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of complex particle mixtures by asymmetrical flow field-flow fractionation coupled to inductively coupled plasma time-of-flight mass spectrometry.
    Meili-Borovinskaya O; Meier F; Drexel R; Baalousha M; Flamigni L; Hegetschweiler A; Kraus T
    J Chromatogr A; 2021 Mar; 1641():461981. PubMed ID: 33684778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.