These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 29449374)
1. Time-resolved analysis of amino acid stress identifies eIF2 phosphorylation as necessary to inhibit mTORC1 activity in liver. Nikonorova IA; Mirek ET; Signore CC; Goudie MP; Wek RC; Anthony TG J Biol Chem; 2018 Apr; 293(14):5005-5015. PubMed ID: 29449374 [TBL] [Abstract][Full Text] [Related]
2. Obesity challenges the hepatoprotective function of the integrated stress response to asparaginase exposure in mice. Nikonorova IA; Al-Baghdadi RJT; Mirek ET; Wang Y; Goudie MP; Wetstein BB; Dixon JL; Hine C; Mitchell JR; Adams CM; Wek RC; Anthony TG J Biol Chem; 2017 Apr; 292(16):6786-6798. PubMed ID: 28242759 [TBL] [Abstract][Full Text] [Related]
3. GCN2 protein kinase is required to activate amino acid deprivation responses in mice treated with the anti-cancer agent L-asparaginase. Bunpo P; Dudley A; Cundiff JK; Cavener DR; Wek RC; Anthony TG J Biol Chem; 2009 Nov; 284(47):32742-9. PubMed ID: 19783659 [TBL] [Abstract][Full Text] [Related]
4. Role of activating transcription factor 4 in the hepatic response to amino acid depletion by asparaginase. Al-Baghdadi RJT; Nikonorova IA; Mirek ET; Wang Y; Park J; Belden WJ; Wek RC; Anthony TG Sci Rep; 2017 Apr; 7(1):1272. PubMed ID: 28455513 [TBL] [Abstract][Full Text] [Related]
5. The eukaryotic initiation factor 2 kinase GCN2 protects against hepatotoxicity during asparaginase treatment. Wilson GJ; Bunpo P; Cundiff JK; Wek RC; Anthony TG Am J Physiol Endocrinol Metab; 2013 Nov; 305(9):E1124-33. PubMed ID: 24002574 [TBL] [Abstract][Full Text] [Related]
6. Dietary Methionine Restriction Regulates Liver Protein Synthesis and Gene Expression Independently of Eukaryotic Initiation Factor 2 Phosphorylation in Mice. Pettit AP; Jonsson WO; Bargoud AR; Mirek ET; Peelor FF; Wang Y; Gettys TW; Kimball SR; Miller BF; Hamilton KL; Wek RC; Anthony TG J Nutr; 2017 Jun; 147(6):1031-1040. PubMed ID: 28446632 [No Abstract] [Full Text] [Related]
8. GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Averous J; Lambert-Langlais S; Mesclon F; Carraro V; Parry L; Jousse C; Bruhat A; Maurin AC; Pierre P; Proud CG; Fafournoux P Sci Rep; 2016 Jun; 6():27698. PubMed ID: 27297692 [TBL] [Abstract][Full Text] [Related]
9. General control nonderepressible 2 deletion predisposes to asparaginase-associated pancreatitis in mice. Phillipson-Weiner L; Mirek ET; Wang Y; McAuliffe WG; Wek RC; Anthony TG Am J Physiol Gastrointest Liver Physiol; 2016 Jun; 310(11):G1061-70. PubMed ID: 26968207 [TBL] [Abstract][Full Text] [Related]
10. Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. Anthony TG; McDaniel BJ; Byerley RL; McGrath BC; Cavener DR; McNurlan MA; Wek RC J Biol Chem; 2004 Aug; 279(35):36553-61. PubMed ID: 15213227 [TBL] [Abstract][Full Text] [Related]
11. Discordant regulation of eIF2 kinase GCN2 and mTORC1 during nutrient stress. Misra J; Holmes MJ; T Mirek E; Langevin M; Kim HG; Carlson KR; Watford M; Dong XC; Anthony TG; Wek RC Nucleic Acids Res; 2021 Jun; 49(10):5726-5742. PubMed ID: 34023907 [TBL] [Abstract][Full Text] [Related]
12. GCN2 is required to increase fibroblast growth factor 21 and maintain hepatic triglyceride homeostasis during asparaginase treatment. Wilson GJ; Lennox BA; She P; Mirek ET; Al Baghdadi RJ; Fusakio ME; Dixon JL; Henderson GC; Wek RC; Anthony TG Am J Physiol Endocrinol Metab; 2015 Feb; 308(4):E283-93. PubMed ID: 25491724 [TBL] [Abstract][Full Text] [Related]
13. Translational control during endoplasmic reticulum stress beyond phosphorylation of the translation initiation factor eIF2α. Guan BJ; Krokowski D; Majumder M; Schmotzer CL; Kimball SR; Merrick WC; Koromilas AE; Hatzoglou M J Biol Chem; 2014 May; 289(18):12593-611. PubMed ID: 24648524 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation of GCN2 by mTOR confers adaptation to conditions of hyper-mTOR activation under stress. Darawshi O; Yassin O; Shmuel M; Wek RC; Mahdizadeh SJ; Eriksson LA; Hatzoglou M; Tirosh B J Biol Chem; 2024 Aug; 300(8):107575. PubMed ID: 39013537 [TBL] [Abstract][Full Text] [Related]
15. Role of GCN2-Independent Signaling Through a Noncanonical PERK/NRF2 Pathway in the Physiological Responses to Dietary Methionine Restriction. Wanders D; Stone KP; Forney LA; Cortez CC; Dille KN; Simon J; Xu M; Hotard EC; Nikonorova IA; Pettit AP; Anthony TG; Gettys TW Diabetes; 2016 Jun; 65(6):1499-510. PubMed ID: 26936965 [TBL] [Abstract][Full Text] [Related]
16. Genetic removal of eIF2α kinase PERK in mice enables hippocampal L-LTP independent of mTORC1 activity. Zimmermann HR; Yang W; Beckelman BC; Kasica NP; Zhou X; Galli LD; Ryazanov AG; Ma T J Neurochem; 2018 Jul; 146(2):133-144. PubMed ID: 29337352 [TBL] [Abstract][Full Text] [Related]
17. The amino acid sensor GCN2 suppresses terminal oligopyrimidine (TOP) mRNA translation via La-related protein 1 (LARP1). Farooq Z; Kusuma F; Burke P; Dufour CR; Lee D; Tabatabaei N; Toboz P; Radovani E; Greenblatt JF; Rehman J; Class J; Khoutorsky A; Fonseca BD; Richner JM; Mercier E; Bourque G; Giguère V; Subramaniam AR; Han J; Tahmasebi S J Biol Chem; 2022 Sep; 298(9):102277. PubMed ID: 35863436 [TBL] [Abstract][Full Text] [Related]
18. GZD824 Inhibits GCN2 and Sensitizes Cancer Cells to Amino Acid Starvation Stress. Kato Y; Kunimasa K; Takahashi M; Harada A; Nagasawa I; Osawa M; Sugimoto Y; Tomida A Mol Pharmacol; 2020 Dec; 98(6):669-676. PubMed ID: 33033108 [TBL] [Abstract][Full Text] [Related]
19. GCN2 drives diurnal patterns in the hepatic integrated stress response and maintains circadian rhythms in whole body metabolism during amino acid insufficiency. Levy JL; Mirek ET; Rodriguez EM; Tolentino MJ; Zalma BA; Roepke TA; Wek RC; Cao R; Anthony TG Am J Physiol Endocrinol Metab; 2024 Oct; 327(4):E563-E576. PubMed ID: 39196798 [TBL] [Abstract][Full Text] [Related]
20. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Ye J; Palm W; Peng M; King B; Lindsten T; Li MO; Koumenis C; Thompson CB Genes Dev; 2015 Nov; 29(22):2331-6. PubMed ID: 26543160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]