BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 2944950)

  • 21. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. XIII. Characterization of a third T cell population involved in suppression of in vitro PFC responses.
    Sherr DH; Dorf ME
    J Immunol; 1982 Mar; 128(3):1260-6. PubMed ID: 6173430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A role for macrophages in suppressor cell induction.
    Usui M; Aoki I; Sunshine GH; Dorf ME
    J Immunol; 1984 Apr; 132(4):1728-34. PubMed ID: 6230391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. T cell receptor alpha-chain defines the antigen specificity of antigen-specific suppressor factor but does not impart genetic restriction.
    O'Hara RM; Byrne MC; Kuchroo VK; Nagelin A; Whitters MJ; Jayaraman S; Henderson SL; Dorf ME; Collins M
    J Immunol; 1995 Mar; 154(5):2075-81. PubMed ID: 7868884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two loci in I-J subregion of the H-2 complex controlling molecules selectively expressed on suppressor and helper T cells.
    Ochi A; Nonaka M; Hayakawa K; Okumura K; Tada T
    J Immunol; 1982 Jul; 129(1):227-31. PubMed ID: 6211483
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of T cell hybridomas. III. Distinctions between two types of hapten-specific suppressor factors that affect plaque-forming cell responses.
    Sherr DH; Minami M; Okuda K; Dorf ME
    J Exp Med; 1983 Feb; 157(2):515-29. PubMed ID: 6185612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro generation of suppressor T cells. Induction of CD3+, IgH-restricted suppressor cells.
    O'Hara RM; Sherr DH; Dorf ME
    J Immunol; 1988 Nov; 141(9):2935-42. PubMed ID: 2459234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism controlling the genetic restrictions of an NP-specific suppressor factor that inhibits B cell responses.
    Hausman PB; Sherr DH; Dorf ME
    J Immunol; 1985 Aug; 135(2):915-21. PubMed ID: 2409159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immunogenic capacity of macrophage hybridomas.
    Tzehoval E; Dagan S; Eisenbach L; Atsmon J; Feldman M
    Eur J Immunol; 1989 Jan; 19(1):89-96. PubMed ID: 2465907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lymphokine-mediated induction of antigen-presenting ability in thymic stromal cells.
    Ransom J; Fischer M; Mercer L; Zlotnik A
    J Immunol; 1987 Oct; 139(8):2620-8. PubMed ID: 3116089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specific lymphocyte-target cell conjugate formation between tumor-specific helper T-cell hybridomas and IA-bearing RCS tumors and IE-bearing allogeneic cells. I. Role of Ia and both L3T4 and LFA-1 antigens in recognition/binding.
    Ohnishi K; Bonavida B
    J Immunol; 1986 Dec; 137(11):3681-8. PubMed ID: 2946766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of macrophages in anti-idiotypic antibody and T suppressor factor induction of timothy grass pollen antigen B-specific T suppressor cells.
    Malley A; Bradley LM; Shiigi SM
    J Immunol; 1987 Aug; 139(4):1046-53. PubMed ID: 2956323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Macrophage MHC receptor 2: a novel receptor on allograft (H-2D(d)K(d))-induced macrophage (H-2D(b)K(b)) recognizing an MHC class I molecule, H-2K(d), in mice.
    Tashiro-Yamaji J; Kubota T; Yoshida R
    Gene; 2006 Dec; 384():1-8. PubMed ID: 17010536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Requirements for suppressor T cell activation.
    Usui M; Aoki I; Sunshine GH; Dorf ME
    J Immunol; 1984 Sep; 133(3):1137-41. PubMed ID: 6205067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epidermal cells in activation of suppressor lymphocytes: further characterization.
    Granstein RD; Askari M; Whitaker D; Murphy GF
    J Immunol; 1987 Jun; 138(12):4055-62. PubMed ID: 2884258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA-mediated transfer of major histocompatibility class II I-Ab and I-Abm12 genes into B lymphoma cells: molecular and functional analysis of introduced antigens.
    Ben-Nun A; Choi E; McIntyre KR; Leeman SA; McKean DJ; Seidman JG; Glimcher LH
    J Immunol; 1985 Aug; 135(2):1456-64. PubMed ID: 3925010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hapten-specific responses to the phenyltrimethylamino hapten. V. A single chain antigen-binding I-J+ first-order T suppressor factor requires antigen to induce anti-idiotypic second-order suppressor T cells.
    Jayaraman S; Bellone CJ
    J Immunol; 1985 Feb; 134(2):1010-8. PubMed ID: 3155532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a hybridoma-derived T cell factor that promotes the production of antibodies bearing a dominant cross-reactive idiotype(s).
    Wardzala AM; Bowen MB; Jendrisak GS; Bellone CJ
    J Mol Cell Immunol; 1986; 2(5):243-53. PubMed ID: 2978231
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Macrophage-hybridomas: generation, structure, and function.
    Tzehoval E; Segal S; Zinberg N; Feldman M
    J Immunol; 1984 Apr; 132(4):1741-7. PubMed ID: 6607946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Origin and characteristics of ultraviolet-B radiation-induced suppressor T lymphocytes.
    Shreedhar VK; Pride MW; Sun Y; Kripke ML; Strickland FM
    J Immunol; 1998 Aug; 161(3):1327-35. PubMed ID: 9686595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monoclonal c-myc transformed macrophage cell lines. I. Heterogeneity in ability to process and present antigen.
    Trannoy E; Manser T; Cole MD; Daley MJ
    J Immunol; 1993 Sep; 151(6):3042-56. PubMed ID: 8104218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.