These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29449836)

  • 21. Tale of two metal reducers: comparative proteome analysis of Geobacter sulferreducens PCA and Shewanella oneidensis MR-1.
    Giometti CS
    Methods Biochem Anal; 2006; 49():97-111. PubMed ID: 16929676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of denitrification performance with reduction of nitrite accumulation and N
    Jiang M; Zheng X; Chen Y
    Water Res; 2020 Feb; 169():115242. PubMed ID: 31706124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MgtE Homolog FicI Acts as a Secondary Ferrous Iron Importer in Shewanella oneidensis Strain MR-1.
    Bennett BD; Redford KE; Gralnick JA
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330185
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A kinetic model describing Shewanella oneidensis MR-1 growth, substrate consumption, and product secretion.
    Tang YJ; Meadows AL; Keasling JD
    Biotechnol Bioeng; 2007 Jan; 96(1):125-33. PubMed ID: 16865732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements.
    Nelson JA
    J Fish Biol; 2016 Jan; 88(1):10-25. PubMed ID: 26768970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy transformation and entropy production in living systems I. Applications to embryonic growth.
    Briedis D; Seagrave RC
    J Theor Biol; 1984 Sep; 110(2):173-93. PubMed ID: 6541734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ¹³C Pathway Analysis for the Role of Formate in Electricity Generation by Shewanella Oneidensis MR-1 Using Lactate in Microbial Fuel Cells.
    Luo S; Guo W; Nealson KH; Feng X; He Z
    Sci Rep; 2016 Feb; 6():20941. PubMed ID: 26868848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isobutanol production from an engineered Shewanella oneidensis MR-1.
    Jeon JM; Park H; Seo HM; Kim JH; Bhatia SK; Sathiyanarayanan G; Song HS; Park SH; Choi KY; Sang BI; Yang YH
    Bioprocess Biosyst Eng; 2015 Nov; 38(11):2147-54. PubMed ID: 26280214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iron mineral-humic acid complex enhanced Cr(VI) reduction by Shewanella oneidensis MR-1.
    Mohamed A; Yu L; Fang Y; Ashry N; Riahi Y; Uddin I; Dai K; Huang Q
    Chemosphere; 2020 May; 247():125902. PubMed ID: 31978657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production.
    Rosenbaum M; Cotta MA; Angenent LT
    Biotechnol Bioeng; 2010 Apr; 105(5):880-8. PubMed ID: 19998276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.
    Li F; Yin C; Sun L; Li Y; Guo X; Song H
    Biotechnol J; 2018 May; 13(5):e1700491. PubMed ID: 29044893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Genome-Scale Model of
    Dufault-Thompson K; Jian H; Cheng R; Li J; Wang F; Zhang Y
    mSystems; 2017; 2(2):. PubMed ID: 28382331
    [No Abstract]   [Full Text] [Related]  

  • 33. Multiheme Cytochrome Mediated Redox Conduction through Shewanella oneidensis MR-1 Cells.
    Xu S; Barrozo A; Tender LM; Krylov AI; El-Naggar MY
    J Am Chem Soc; 2018 Aug; 140(32):10085-10089. PubMed ID: 30056703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Addition of Shewanella oneidensis MR-1 to the Dehalococcoides-containing culture enhances the trichloroethene dechlorination.
    Li Y; Wen LL; Zhao HP; Zhu L
    Environ Int; 2019 Dec; 133(Pt B):105245. PubMed ID: 31683156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth inhibition and stimulation of Shewanella oneidensis MR-1 by surfactants and calcium polysulfide.
    Bailey KL; Tilton F; Jansik DP; Ergas SJ; Marshall MJ; Miracle AL; Wellman DM
    Ecotoxicol Environ Saf; 2012 Jun; 80():195-202. PubMed ID: 22444725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial growth by a net heat up-take: a calorimetric and thermodynamic study on acetotrophic methanogenesis by Methanosarcina barkeri.
    Liu JS; Marison IW; von Stockar U
    Biotechnol Bioeng; 2001 Oct; 75(2):170-80. PubMed ID: 11536139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms.
    Heijnen JJ; Van Dijken JP
    Biotechnol Bioeng; 1992 Apr; 39(8):833-58. PubMed ID: 18601018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calculation of the specific rate of catabolic activity (Ac) from the heat flow rate of soil microbial reactions measured by calorimetry: significance and applications.
    Barros N; Gallego M; Feijóo S
    Chem Biodivers; 2004 Oct; 1(10):1560-8. PubMed ID: 17191799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transient storage of electrical charge in biofilms of Shewanella oneidensis MR-1 growing in a microbial fuel cell.
    Uría N; Muñoz Berbel X; Sánchez O; Muñoz FX; Mas J
    Environ Sci Technol; 2011 Dec; 45(23):10250-6. PubMed ID: 21981730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anaerobic metabolism in aerobic mammalian cells: information from the ratio of calorimetric heat flux and respirometric oxygen flux.
    Gnaiger E; Kemp RB
    Biochim Biophys Acta; 1990 Apr; 1016(3):328-32. PubMed ID: 2184896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.