These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29449925)

  • 1. Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals.
    Zhang Z; Wang Z; He S; Wang C; Jin M; Yin Y
    Chem Sci; 2015 Sep; 6(9):5197-5203. PubMed ID: 29449925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals.
    Johnson NJ; Korinek A; Dong C; van Veggel FC
    J Am Chem Soc; 2012 Jul; 134(27):11068-71. PubMed ID: 22734596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: self-focusing via ripening.
    Chen Y; Johnson E; Peng X
    J Am Chem Soc; 2007 Sep; 129(35):10937-47. PubMed ID: 17696349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Real-Time Observation of Formation and Self-Assembly of Perovskite Nanocrystals at High Temperature.
    Qiao Z; Wang X; Zhai Y; Yu R; Fang Z; Chen G
    Nano Lett; 2023 Dec; 23(23):10788-10795. PubMed ID: 37982537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Discrete Growth in Semiconductor Nanocrystals: Nanoplatelets and Magic-Sized Clusters.
    Pun AB; Mazzotti S; Mule AS; Norris DJ
    Acc Chem Res; 2021 Apr; 54(7):1545-1554. PubMed ID: 33660971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seeding a New Kind of Garden: Synthesis of Architecturally Defined Multimetallic Nanostructures by Seed-Mediated Co-Reduction.
    Weiner RG; Kunz MR; Skrabalak SE
    Acc Chem Res; 2015 Oct; 48(10):2688-95. PubMed ID: 26339803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the anatase to rutile phase transformation and controlled synthesis of rutile nanocrystals with the assistance of ionic liquid.
    Ding K; Miao Z; Hu B; An G; Sun Z; Han B; Liu Z
    Langmuir; 2010 Jun; 26(12):10294-302. PubMed ID: 20426393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyoxometalate-mediated one-pot synthesis of Pd nanocrystals with controlled morphologies for efficient chemical and electrochemical catalysis.
    Kim D; Seog JH; Kim M; Yang M; Gillette E; Lee SB; Han SW
    Chemistry; 2015 Mar; 21(14):5387-94. PubMed ID: 25684660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-controlled synthesis of Pd nanocrystals using a specific multifunctional peptide.
    Chiu CY; Li Y; Huang Y
    Nanoscale; 2010 Jun; 2(6):927-30. PubMed ID: 20648291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benefitting from Dopant Loss and Ostwald Ripening in Mn Doping of II-VI Semiconductor Nanocrystals.
    Zhai Y; Shim M
    Nanoscale Res Lett; 2015 Dec; 10(1):423. PubMed ID: 26510444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of oil type on nanoemulsion formation and Ostwald ripening stability.
    Wooster TJ; Golding M; Sanguansri P
    Langmuir; 2008 Nov; 24(22):12758-65. PubMed ID: 18850732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-controlled syntheses and hydrophilic surface modification of Fe3O4, Ag, and Fe3O4/Ag heterodimer nanocrystals.
    Li X; Si H; Niu JZ; Shen H; Zhou C; Yuan H; Wang H; Ma L; Li LS
    Dalton Trans; 2010 Dec; 39(45):10984-9. PubMed ID: 20959921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals.
    Chen Y; Kim M; Lian G; Johnson MB; Peng X
    J Am Chem Soc; 2005 Sep; 127(38):13331-7. PubMed ID: 16173766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-assisted asymmetric ostwald ripening of CdSe dots to rods.
    Li R; Luo Z; Papadimitrakopoulos F
    J Am Chem Soc; 2006 May; 128(19):6280-1. PubMed ID: 16683768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential Growth of High Quality Sub-10 nm Core-Shell Nanocrystals: Understanding the Nucleation and Growth Process Using Dynamic Light Scattering.
    Zhao ML; Hao LN; Zhang J; Zhang CY; Lu Y; Qian HS
    Langmuir; 2019 Jan; 35(2):489-494. PubMed ID: 30561206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable synthesis of nearly monodisperse spherical aggregates of CeO2 nanocrystals and their catalytic activity for HCHO oxidation.
    Wang Q; Jia W; Liu B; Zhao W; Li C; Zhang J; Xu G
    Chem Asian J; 2012 Oct; 7(10):2258-67. PubMed ID: 22764014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral Au templates.
    Yu Y; Zhang Q; Liu B; Lee JY
    J Am Chem Soc; 2010 Dec; 132(51):18258-65. PubMed ID: 21141886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formic acid-assisted synthesis of palladium nanocrystals and their electrocatalytic properties.
    Wang Q; Wang Y; Guo P; Li Q; Ding R; Wang B; Li H; Liu J; Zhao XS
    Langmuir; 2014 Jan; 30(1):440-6. PubMed ID: 24369065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of monodisperse spherical nanocrystals.
    Park J; Joo J; Kwon SG; Jang Y; Hyeon T
    Angew Chem Int Ed Engl; 2007; 46(25):4630-60. PubMed ID: 17525914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo evaluation of SN-38 nanocrystals with different particle sizes.
    Chen M; Li W; Zhang X; Dong Y; Hua Y; Zhang H; Gao J; Zhao L; Li Y; Zheng A
    Int J Nanomedicine; 2017; 12():5487-5500. PubMed ID: 28814865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.