BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 29450799)

  • 1. Iron oxide labeling does not affect differentiation potential of human bone marrow mesenchymal stem cells exhibited by their differentiation into cardiac and neuronal cells.
    Mohanty S; Jain KG; Nandy SB; Kakkar A; Kumar M; Dinda AK; Singh H; Ray A
    Mol Cell Biochem; 2018 Nov; 448(1-2):17-26. PubMed ID: 29450799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of neural differentiation in human bone marrow mesenchymal stem cells by extremely low-frequency electromagnetic fields incorporated with MNPs.
    Choi YK; Lee DH; Seo YK; Jung H; Park JK; Cho H
    Appl Biochem Biotechnol; 2014 Oct; 174(4):1233-1245. PubMed ID: 25099373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive magnetic near Infra-Red fluorescent core-shell iron oxide/human serum albumin nanoparticles for controlled release of growth factors for augmentation of human mesenchymal stem cell growth and differentiation.
    Levy I; Sher I; Corem-Salkmon E; Ziv-Polat O; Meir A; Treves AJ; Nagler A; Kalter-Leibovici O; Margel S; Rotenstreich Y
    J Nanobiotechnology; 2015 May; 13():34. PubMed ID: 25947109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resveratrol-induced SIRT1 activation promotes neuronal differentiation of human bone marrow mesenchymal stem cells.
    Joe IS; Jeong SG; Cho GW
    Neurosci Lett; 2015 Jan; 584():97-102. PubMed ID: 25459285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PDE4 Inhibition by Rolipram Promotes Neuronal Differentiation in Human Bone Marrow Mesenchymal Stem Cells.
    Joe IS; Cho GW
    Cell Reprogram; 2016 Aug; 18(4):224-9. PubMed ID: 27459581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells' therapeutic efficacy for myocardial infarction.
    Han J; Kim B; Shin JY; Ryu S; Noh M; Woo J; Park JS; Lee Y; Lee N; Hyeon T; Choi D; Kim BS
    ACS Nano; 2015 Mar; 9(3):2805-19. PubMed ID: 25688594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valproic acid promotes neuronal differentiation by induction of neuroprogenitors in human bone-marrow mesenchymal stromal cells.
    Jeong SG; Ohn T; Kim SH; Cho GW
    Neurosci Lett; 2013 Oct; 554():22-7. PubMed ID: 24021810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural maturation of human bone marrow mesenchymal stem cells-derived cardiomyocytes under alternative induction of 5-azacytidine.
    Piryaei A; Soleimani M; Heidari MH; Saheli M; Rohani R; Almasieh M
    Cell Biol Int; 2015 May; 39(5):519-30. PubMed ID: 25573851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Susceptibility-weighted imaging for stem cell visualization in a rat photothrombotic cerebral infarction model.
    Ha BC; Jung J; Kwak BK
    Acta Radiol; 2015 Feb; 56(2):219-27. PubMed ID: 24574360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-499a-5p Promotes Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells to Cardiomyocytes.
    Neshati V; Mollazadeh S; Fazly Bazzaz BS; de Vries AAF; Mojarrad M; Naderi-Meshkin H; Neshati Z; Mirahmadi M; Kerachian MA
    Appl Biochem Biotechnol; 2018 Sep; 186(1):245-255. PubMed ID: 29574510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monocyte Chemoattractant Protein-Induced Protein 1 (MCPIP1) Enhances Angiogenic and Cardiomyogenic Potential of Murine Bone Marrow-Derived Mesenchymal Stem Cells.
    Labedz-Maslowska A; Lipert B; Berdecka D; Kedracka-Krok S; Jankowska U; Kamycka E; Sekula M; Madeja Z; Dawn B; Jura J; Zuba-Surma EK
    PLoS One; 2015; 10(7):e0133746. PubMed ID: 26214508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies to reduce the intracellular effects of iron oxide nanoparticle degradation.
    Wu M; Gu L; Gong Q; Sun J; Ma Y; Wu H; Wang Y; Guo G; Li X; Zhu H
    Nanomedicine (Lond); 2017 Mar; 12(5):555-570. PubMed ID: 28181458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging.
    Jasmin ; Torres AL; Nunes HM; Passipieri JA; Jelicks LA; Gasparetto EL; Spray DC; Campos de Carvalho AC; Mendez-Otero R
    J Nanobiotechnology; 2011 Feb; 9():4. PubMed ID: 21542946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological effects of iron oxide-protamine sulfate complex on mesenchymal stem cells and its relaxometry based labeling optimization for cellular MRI.
    Mishra SK; Khushu S; Gangenahalli G
    Exp Cell Res; 2017 Feb; 351(1):59-67. PubMed ID: 28040490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of HSA coated iron oxide labeling on human umbilical cord derived mesenchymal stem cells.
    Sanganeria P; Chandra S; Bahadur D; Khanna A
    Nanotechnology; 2015 Mar; 26(12):125103. PubMed ID: 25744689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient In vitro labeling rabbit bone marrow-derived mesenchymal stem cells with SPIO and differentiating into neural-like cells.
    Zhang R; Li J; Li J; Xie J
    Mol Cells; 2014 Sep; 37(9):650-5. PubMed ID: 25234466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis.
    Kostura L; Kraitchman DL; Mackay AM; Pittenger MF; Bulte JW
    NMR Biomed; 2004 Nov; 17(7):513-7. PubMed ID: 15526348
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.