These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 29451279)

  • 21. Flexible and rigid amine-functionalized microporous frameworks based on different secondary building units: supramolecular isomerism, selective CO(2) capture, and catalysis.
    Haldar R; Reddy SK; Suresh VM; Mohapatra S; Balasubramanian S; Maji TK
    Chemistry; 2014 Apr; 20(15):4347-56. PubMed ID: 24590593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intermolecular carbon-carbon, nitrogen-nitrogen and oxygen-oxygen non-covalent bonding in dipolar molecules.
    Remya K; Suresh CH
    Phys Chem Chem Phys; 2015 Jul; 17(28):18380-92. PubMed ID: 26103886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitrogen-rich porous adsorbents for CO2 capture and storage.
    Li PZ; Zhao Y
    Chem Asian J; 2013 Aug; 8(8):1680-91. PubMed ID: 23744799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties.
    Wang J; Senkovska I; Oschatz M; Lohe MR; Borchardt L; Heerwig A; Liu Q; Kaskel S
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3160-7. PubMed ID: 23530455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical exploration of the nanoscale host-guest interactions between [n]cycloparaphenylenes (n = 10, 8 and 9) and fullerene C₆₀: from single- to three-potential well.
    Yuan K; Zhou CH; Zhu YC; Zhao X
    Phys Chem Chem Phys; 2015 Jul; 17(28):18802-12. PubMed ID: 26121936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen.
    Jiao Y; Zheng Y; Smith SC; Du A; Zhu Z
    ChemSusChem; 2014 Feb; 7(2):435-41. PubMed ID: 24488677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing the Structural Stability of and Enhanced CO2 Storage in MOF MIL-68(In) under High Pressures by FTIR Spectroscopy.
    Hu Y; Lin B; He P; Li Y; Huang Y; Song Y
    Chemistry; 2015 Dec; 21(51):18739-48. PubMed ID: 26538464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular simulations of nitrogen-doped hierarchical carbon adsorbents for post-combustion CO
    Psarras P; He J; Wilcox J
    Phys Chem Chem Phys; 2016 Oct; 18(41):28747-28758. PubMed ID: 27722315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions of CO2 with various functional molecules.
    Lee HM; Youn IS; Saleh M; Lee JW; Kim KS
    Phys Chem Chem Phys; 2015 Apr; 17(16):10925-33. PubMed ID: 25820034
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facilitating guest transport in clathrate hydrates by tuning guest-host interactions.
    Moudrakovski IL; Udachin KA; Alavi S; Ratcliffe CI; Ripmeester JA
    J Chem Phys; 2015 Feb; 142(7):074705. PubMed ID: 25702022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microporous Metal-Organic Framework Stabilized by Balanced Multiple Host-Couteranion Hydrogen-Bonding Interactions for High-Density CO2 Capture at Ambient Conditions.
    Ye Y; Xiong S; Wu X; Zhang L; Li Z; Wang L; Ma X; Chen QH; Zhang Z; Xiang S
    Inorg Chem; 2016 Jan; 55(1):292-9. PubMed ID: 26653758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations.
    Lan J; Cao D; Wang W; Smit B
    ACS Nano; 2010 Jul; 4(7):4225-37. PubMed ID: 20568707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Microporosity and Surface Chemistry on Separation Performances of N-Containing Pitch-Based Activated Carbons for CO2/N2 Binary Mixture.
    Lee MS; Park M; Kim HY; Park SJ
    Sci Rep; 2016 Mar; 6():23224. PubMed ID: 26987683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CO
    Vidal-Vidal Á; Faza ON; Silva López C
    J Phys Chem A; 2017 Nov; 121(47):9118-9130. PubMed ID: 29052989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Turning carbon dioxide into fuel.
    Jiang Z; Xiao T; Kuznetsov VL; Edwards PP
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3343-64. PubMed ID: 20566515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.
    Bara JE; Camper DE; Gin DL; Noble RD
    Acc Chem Res; 2010 Jan; 43(1):152-9. PubMed ID: 19795831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimuli-responsive host-guest systems based on the recognition of cryptands by organic guests.
    Zhang M; Yan X; Huang F; Niu Z; Gibson HW
    Acc Chem Res; 2014 Jul; 47(7):1995-2005. PubMed ID: 24804805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes.
    Wu J; Yadav RM; Liu M; Sharma PP; Tiwary CS; Ma L; Zou X; Zhou XD; Yakobson BI; Lou J; Ajayan PM
    ACS Nano; 2015 May; 9(5):5364-71. PubMed ID: 25897553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Chemical Route to a Carbon Dioxide Neutral World.
    Martens JA; Bogaerts A; De Kimpe N; Jacobs PA; Marin GB; Rabaey K; Saeys M; Verhelst S
    ChemSusChem; 2017 Mar; 10(6):1039-1055. PubMed ID: 27925436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption mechanism of graphene-like ZnO monolayer towards CO₂ molecules: enhanced CO₂ capture.
    Rao GS; Hussain T; Islam MS; Sagynbaeva M; Gupta D; Panigrahi P; Ahuja R
    Nanotechnology; 2016 Jan; 27(1):015502. PubMed ID: 26599020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.