BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29451481)

  • 1. [Laser-assisted bioprinting: a novel approach for bone regeneration applications].
    Oliveira H; Dusserre N; Hakobyan D; Fricain JC
    Med Sci (Paris); 2018 Feb; 34(2):125-128. PubMed ID: 29451481
    [No Abstract]   [Full Text] [Related]  

  • 2. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications.
    Keriquel V; Oliveira H; Rémy M; Ziane S; Delmond S; Rousseau B; Rey S; Catros S; Amédée J; Guillemot F; Fricain JC
    Sci Rep; 2017 May; 7(1):1778. PubMed ID: 28496103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional printing: The potential technology widely used in medical fields.
    Li H; Fan W; Zhu X
    J Biomed Mater Res A; 2020 Nov; 108(11):2217-2229. PubMed ID: 32363725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of gelatin as an effective energy absorbing layer for laser bioprinting.
    Xiong R; Zhang Z; Chai W; Chrisey DB; Huang Y
    Biofabrication; 2017 Jun; 9(2):024103. PubMed ID: 28597844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inner Workings: 3D printer innovations tackle complexity of metamaterials, living tissue.
    Bourzac K
    Proc Natl Acad Sci U S A; 2017 Apr; 114(16):4034-4036. PubMed ID: 28420749
    [No Abstract]   [Full Text] [Related]  

  • 6. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering.
    Daly AC; Freeman FE; Gonzalez-Fernandez T; Critchley SE; Nulty J; Kelly DJ
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 28804984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing of functional biomaterials for tissue engineering.
    Zhu W; Ma X; Gou M; Mei D; Zhang K; Chen S
    Curr Opin Biotechnol; 2016 Aug; 40():103-112. PubMed ID: 27043763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Printing New Bones: From Print-and-Implant Devices to Bioprinted Bone Organ Precursors.
    Freeman FE; Burdis R; Kelly DJ
    Trends Mol Med; 2021 Jul; 27(7):700-711. PubMed ID: 34090809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale bioprinting of vascularized models.
    Miri AK; Khalilpour A; Cecen B; Maharjan S; Shin SR; Khademhosseini A
    Biomaterials; 2019 Apr; 198():204-216. PubMed ID: 30244825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration.
    Wang Z; Wang Y; Yan J; Zhang K; Lin F; Xiang L; Deng L; Guan Z; Cui W; Zhang H
    Adv Drug Deliv Rev; 2021 Jul; 174():504-534. PubMed ID: 33991588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances on Bone Substitutes through 3D Bioprinting.
    Genova T; Roato I; Carossa M; Motta C; Cavagnetto D; Mussano F
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32977633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printing Technologies for Medical Applications.
    Shafiee A; Atala A
    Trends Mol Med; 2016 Mar; 22(3):254-265. PubMed ID: 26856235
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Touya N; Devun M; Handschin C; Casenave S; Ahmed Omar N; Gaubert A; Dusserre N; De Oliveira H; Kérourédan O; Devillard R
    Biofabrication; 2022 Mar; 14(2):. PubMed ID: 35203068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting.
    Mora-Boza A; Lopez-Donaire ML
    Adv Exp Med Biol; 2018; 1058():221-245. PubMed ID: 29691824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.
    Carlier A; Skvortsov GA; Hafezi F; Ferraris E; Patterson J; Koç B; Van Oosterwyck H
    Biofabrication; 2016 May; 8(2):025009. PubMed ID: 27187017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of Bioprinting with a Modified Desktop 3D Printer.
    Goldstein TA; Epstein CJ; Schwartz J; Krush A; Lagalante DJ; Mercadante KP; Zeltsman D; Smith LP; Grande DA
    Tissue Eng Part C Methods; 2016 Dec; 22(12):1071-1076. PubMed ID: 27819188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D bioprinting of cells, tissues and organs.
    Dey M; Ozbolat IT
    Sci Rep; 2020 Aug; 10(1):14023. PubMed ID: 32811864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds.
    Mondschein RJ; Kanitkar A; Williams CB; Verbridge SS; Long TE
    Biomaterials; 2017 Sep; 140():170-188. PubMed ID: 28651145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.
    Obregon F; Vaquette C; Ivanovski S; Hutmacher DW; Bertassoni LE
    J Dent Res; 2015 Sep; 94(9 Suppl):143S-52S. PubMed ID: 26124216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.