These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29451717)

  • 1. Modeling of cytometry data in logarithmic space: When is a bimodal distribution not bimodal?
    Erez A; Vogel R; Mugler A; Belmonte A; Altan-Bonnet G
    Cytometry A; 2018 Jun; 93(6):611-619. PubMed ID: 29451717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data.
    Weber LM; Robinson MD
    Cytometry A; 2016 Dec; 89(12):1084-1096. PubMed ID: 27992111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges in the Multivariate Analysis of Mass Cytometry Data: The Effect of Randomization.
    Papoutsoglou G; Lagani V; Schmidt A; Tsirlis K; Cabrero DG; Tegnér J; Tsamardinos I
    Cytometry A; 2019 Nov; 95(11):1178-1190. PubMed ID: 31692248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The anatomy of single cell mass cytometry data.
    Olsen LR; Leipold MD; Pedersen CB; Maecker HT
    Cytometry A; 2019 Feb; 95(2):156-172. PubMed ID: 30277658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What is a "unimodal" cell population? Using statistical tests as criteria for unimodality in automated gating and quality control.
    Johnsson K; Linderoth M; Fontes M
    Cytometry A; 2017 Sep; 91(9):908-916. PubMed ID: 28759711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cytometree: A binary tree algorithm for automatic gating in cytometry analysis.
    Commenges D; Alkhassim C; Gottardo R; Hejblum B; Thiébaut R
    Cytometry A; 2018 Nov; 93(11):1132-1140. PubMed ID: 30277649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Comparison of Conventional and t-SNE-guided Gating Analyses.
    Toghi Eshghi S; Au-Yeung A; Takahashi C; Bolen CR; Nyachienga MN; Lear SP; Green C; Mathews WR; O'Gorman WE
    Front Immunol; 2019; 10():1194. PubMed ID: 31231371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Cell Populations in Single Cell Mass Cytometry Data.
    Abdelaal T; van Unen V; Höllt T; Koning F; Reinders MJT; Mahfouz A
    Cytometry A; 2019 Jul; 95(7):769-781. PubMed ID: 30861637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NetFCM: a semi-automated web-based method for flow cytometry data analysis.
    Frederiksen J; Buggert M; Karlsson AC; Lund O
    Cytometry A; 2014 Nov; 85(11):969-77. PubMed ID: 25044796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic Measurement Models for Quantifying Lymphocyte Responses Using Flow Cytometry.
    Kan A; Pavlyshyn D; Markham JF; Dowling MR; Heinzel S; Zhou JH; Marchingo JM; Hodgkin PD
    PLoS One; 2016; 11(1):e0146227. PubMed ID: 26742110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatically generate two-dimensional gating hierarchy from clustered cytometry data.
    Yang X; Qiu P
    Cytometry A; 2018 Oct; 93(10):1039-1050. PubMed ID: 30176185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unfold High-Dimensional Clouds for Exhaustive Gating of Flow Cytometry Data.
    Qiu P
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1045-51. PubMed ID: 26357042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the Dynamics of Hematopoiesis by In Vivo IdU Pulse-Chase, Mass Cytometry, and Mathematical Modeling.
    Erez A; Mukherjee R; Altan-Bonnet G
    Cytometry A; 2019 Oct; 95(10):1075-1084. PubMed ID: 31150166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced Fluorescence versus Forward Scatter Time-of-Flight and Increased Peak versus Integral Fluorescence Ratios Indicate Receptor Clustering in Flow Cytometry.
    Fürnrohr BG; Stein M; Rhodes B; Chana PS; Schett G; Vyse TJ; Herrmann M; Mielenz D
    J Immunol; 2015 Jul; 195(1):377-85. PubMed ID: 26026066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Data Cleanup for Mass Cytometry.
    Bagwell CB; Inokuma M; Hunsberger B; Herbert D; Bray C; Hill B; Stelzer G; Li S; Kollipara A; Ornatsky O; Baranov V
    Cytometry A; 2020 Feb; 97(2):184-198. PubMed ID: 31737997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated T cell cytometry metrics for immune-monitoring applications in immunotherapy clinical trials.
    Sidiropoulos DN; Stein-O'Brien GL; Danilova L; Gross NE; Charmsaz S; Xavier S; Leatherman J; Wang H; Yarchoan M; Jaffee EM; Fertig EJ; Ho WJ
    JCI Insight; 2022 Oct; 7(19):. PubMed ID: 36214223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standardization and quality control for high-dimensional mass cytometry studies of human samples.
    Kleinsteuber K; Corleis B; Rashidi N; Nchinda N; Lisanti A; Cho JL; Medoff BD; Kwon D; Walker BD
    Cytometry A; 2016 Oct; 89(10):903-913. PubMed ID: 27575385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broad Immune Monitoring and Profiling of T Cell Subsets with Mass Cytometry.
    Brodie TM; Tosevski V
    Methods Mol Biol; 2018; 1745():67-82. PubMed ID: 29476463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-based cell clustering and population tracking for time-series flow cytometry data.
    Minoura K; Abe K; Maeda Y; Nishikawa H; Shimamura T
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):633. PubMed ID: 31881827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping cell populations in flow cytometry data for cross-sample comparison using the Friedman-Rafsky test statistic as a distance measure.
    Hsiao C; Liu M; Stanton R; McGee M; Qian Y; Scheuermann RH
    Cytometry A; 2016 Jan; 89(1):71-88. PubMed ID: 26274018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.