These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 29451805)
1. Loss and formation of malodorous volatile sulfhydryl compounds during wine storage. Kreitman GY; Elias RJ; Jeffery DW; Sacks GL Crit Rev Food Sci Nutr; 2019; 59(11):1728-1752. PubMed ID: 29451805 [TBL] [Abstract][Full Text] [Related]
2. Copper(II)-Mediated Hydrogen Sulfide and Thiol Oxidation to Disulfides and Organic Polysulfanes and Their Reductive Cleavage in Wine: Mechanistic Elucidation and Potential Applications. Kreitman GY; Danilewicz JC; Jeffery DW; Elias RJ J Agric Food Chem; 2017 Mar; 65(12):2564-2571. PubMed ID: 28260381 [TBL] [Abstract][Full Text] [Related]
3. Liberation of Hydrogen Sulfide from Dicysteinyl Polysulfanes in Model Wine. Bekker MZ; Kreitman GY; Jeffery DW; Danilewicz JC J Agric Food Chem; 2018 Dec; 66(51):13483-13491. PubMed ID: 30539626 [TBL] [Abstract][Full Text] [Related]
4. Elusive Chemistry of Hydrogen Sulfide and Mercaptans in Wine. Ferreira V; Franco-Luesma E; Vela E; López R; Hernández-Orte P J Agric Food Chem; 2018 Mar; 66(10):2237-2246. PubMed ID: 28960073 [TBL] [Abstract][Full Text] [Related]
5. Reductive off-odors in wines: Formation and release of H₂S and methanethiol during the accelerated anoxic storage of wines. Franco-Luesma E; Ferreira V Food Chem; 2016 May; 199():42-50. PubMed ID: 26775942 [TBL] [Abstract][Full Text] [Related]
6. The effects of pH and copper on the formation of volatile sulfur compounds in Chardonnay and Shiraz wines post-bottling. Bekker MZ; Mierczynska-Vasilev A; Smith PA; Wilkes EN Food Chem; 2016 Sep; 207():148-56. PubMed ID: 27080891 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of putative precursors of key 'reductive' compounds in wines post-bottling. Bekker MZ; Wilkes EN; Smith PA Food Chem; 2018 Apr; 245():676-686. PubMed ID: 29287425 [TBL] [Abstract][Full Text] [Related]
8. Addition of volatile sulfur compounds to yeast at the early stages of fermentation reveals distinct biological and chemical pathways for aroma formation. Kinzurik MI; Deed RC; Herbst-Johnstone M; Slaghenaufi D; Guzzon R; Gardner RC; Larcher R; Fedrizzi B Food Microbiol; 2020 Aug; 89():103435. PubMed ID: 32138993 [TBL] [Abstract][Full Text] [Related]
9. Effects of five metals on the evolution of hydrogen sulfide, methanethiol, and dimethyl sulfide during anaerobic storage of Chardonnay and Shiraz wines. Viviers MZ; Smith ME; Wilkes E; Smith P J Agric Food Chem; 2013 Dec; 61(50):12385-96. PubMed ID: 24219788 [TBL] [Abstract][Full Text] [Related]
10. Brine-Releasable Hydrogen Sulfide in Wine: Mechanism of Release from Copper Complexes and Effects of Glutathione. Allison RB; Sacks GL J Agric Food Chem; 2021 Nov; 69(44):13164-13172. PubMed ID: 34709813 [TBL] [Abstract][Full Text] [Related]
11. Role of Elemental Sulfur in Forming Latent Precursors of H Jastrzembski JA; Allison RB; Friedberg E; Sacks GL J Agric Food Chem; 2017 Dec; 65(48):10542-10549. PubMed ID: 29129055 [TBL] [Abstract][Full Text] [Related]
12. Formation and Release of H2S, Methanethiol, and Dimethylsulfide during the Anoxic Storage of Wines at Room Temperature. Franco-Luesma E; Ferreira V J Agric Food Chem; 2016 Aug; 64(32):6317-26. PubMed ID: 27425214 [TBL] [Abstract][Full Text] [Related]
13. Accurate measurement of sulfhydryls and TCEP-releasable sulfhydryls in the liquid phase of wine that contribute to 'reductive' aromas using LC-MS/MS. Bekker MZ; Taraji M; Hysenaj V; Lloyd N Heliyon; 2024 Apr; 10(7):e28929. PubMed ID: 38601696 [TBL] [Abstract][Full Text] [Related]
14. The effects of copper fining on the wine content in sulfur off-odors and on their evolution during accelerated anoxic storage. Vela E; Hernández-Orte P; Franco-Luesma E; Ferreira V Food Chem; 2017 Sep; 231():212-221. PubMed ID: 28449999 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen sulfide production during yeast fermentation causes the accumulation of ethanethiol, S-ethyl thioacetate and diethyl disulfide. Kinzurik MI; Herbst-Johnstone M; Gardner RC; Fedrizzi B Food Chem; 2016 Oct; 209():341-7. PubMed ID: 27173572 [TBL] [Abstract][Full Text] [Related]
16. Evolution of Volatile Sulfur Compounds during Wine Fermentation. Kinzurik MI; Herbst-Johnstone M; Gardner RC; Fedrizzi B J Agric Food Chem; 2015 Sep; 63(36):8017-24. PubMed ID: 26271945 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen sulfide production during early yeast fermentation correlates with volatile sulfur compound biogenesis but not thiol release. Hou R; Jelley RE; van Leeuwen KA; Pinu FR; Fedrizzi B; Deed RC FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 37279910 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Techniques for the Quantitation of Reductive Aroma Compounds in White Wine: Links to Sensory Analysis and Cu Fractions. Zhang X; Bekker MZ; Kulcsar AC; Nandorfy DE; Clark AC J Agric Food Chem; 2024 May; 72(19):11051-11061. PubMed ID: 38698723 [TBL] [Abstract][Full Text] [Related]
19. Micro-oxygenation does not eliminate hydrogen sulfide and mercaptans from wine; it simply shifts redox and complex-related equilibria to reversible oxidized species and complexed forms. Vela E; Hernandez-Orte P; Franco-Luesma E; Ferreira V Food Chem; 2018 Mar; 243():222-230. PubMed ID: 29146332 [TBL] [Abstract][Full Text] [Related]
20. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 1: Copper-Catalyzed Oxidation. Kreitman GY; Danilewicz JC; Jeffery DW; Elias RJ J Agric Food Chem; 2016 May; 64(20):4095-104. PubMed ID: 27133282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]