These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29451872)

  • 1. Differences in neural responses to ipsilateral stimuli in wide-view fields between face- and house-selective areas.
    Wang B; Li T; Niu Y; Xiang J; Cheng J; Liu B; Zhang H; Yan T; Kanazawa S; Wu J
    PLoS One; 2018; 13(2):e0192532. PubMed ID: 29451872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a method to present wide-view visual stimuli in MRI for peripheral visual studies.
    Wu J; Wang B; Yang J; Hikino Y; Takahashi S; Yan T; Ohno S; Kanazawa S
    J Neurosci Methods; 2013 Apr; 214(2):126-36. PubMed ID: 23376498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinotopy and attention to the face and house images in the human visual cortex.
    Wang B; Yan T; Ohno S; Kanazawa S; Wu J
    Exp Brain Res; 2016 Jun; 234(6):1623-35. PubMed ID: 26838358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional neural response differences in the determination of faces or houses positioned in a wide visual field.
    Wang B; Yan T; Wu J; Chen K; Imajyo S; Ohno S; Kanazawa S
    PLoS One; 2013; 8(8):e72728. PubMed ID: 23991147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Position selectivity in scene- and object-responsive occipitotemporal regions.
    MacEvoy SP; Epstein RA
    J Neurophysiol; 2007 Oct; 98(4):2089-98. PubMed ID: 17652421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The encoding of category-specific versus nonspecific information in human inferior temporal cortex.
    Guo B; Meng M
    Neuroimage; 2015 Aug; 116():240-7. PubMed ID: 25869859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Position selectivity in face-sensitive visual cortex to facial and nonfacial stimuli: an fMRI study.
    Nichols DF; Betts LR; Wilson HR
    Brain Behav; 2016 Nov; 6(11):e00542. PubMed ID: 27843696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early monocular enucleation selectively disrupts neural development of face perception in the occipital face area.
    Kelly KR; Gallie BL; Steeves JKE
    Exp Eye Res; 2019 Jun; 183():57-61. PubMed ID: 30291860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consecutive TMS-fMRI reveals remote effects of neural noise to the "occipital face area".
    Solomon-Harris LM; Rafique SA; Steeves JK
    Brain Res; 2016 Nov; 1650():134-141. PubMed ID: 27590719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A functional dissociation of face-, body- and scene-selective brain areas based on their response to moving and static stimuli.
    Pitcher D; Ianni G; Ungerleider LG
    Sci Rep; 2019 Jun; 9(1):8242. PubMed ID: 31160680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of brain activity in the fusiform face and parahippocampal place areas in 7-11-year-old children.
    Vuontela V; Jiang P; Tokariev M; Savolainen P; Ma Y; Aronen ET; Fontell T; Liiri T; Ahlström M; Salonen O; Carlson S
    Brain Cogn; 2013 Mar; 81(2):203-14. PubMed ID: 23262175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Occipital Face Area Is Causally Involved in Facial Viewpoint Perception.
    Kietzmann TC; Poltoratski S; König P; Blake R; Tong F; Ling S
    J Neurosci; 2015 Dec; 35(50):16398-403. PubMed ID: 26674865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal dynamics and connectivity pattern differences between centrally and peripherally presented faces.
    Liu L; Ioannides AA
    Neuroimage; 2006 Jul; 31(4):1726-40. PubMed ID: 16564185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Category search speeds up face-selective fMRI responses in a non-hierarchical cortical face network.
    Jiang F; Badler JB; Righi G; Rossion B
    Cortex; 2015 May; 66():69-80. PubMed ID: 25800507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional modulation of contralateral bias in early and object-selective areas after stroke of the occipital ventral cortices.
    Praß M; Grimsen C; Fahle M
    Neuropsychologia; 2017 Jan; 95():73-85. PubMed ID: 27956263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial coding and invariance in object-selective cortex.
    Carlson T; Hogendoorn H; Fonteijn H; Verstraten FA
    Cortex; 2011 Jan; 47(1):14-22. PubMed ID: 19833329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neural basis of the behavioral face-inversion effect.
    Yovel G; Kanwisher N
    Curr Biol; 2005 Dec; 15(24):2256-62. PubMed ID: 16360687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual high-level regions respond to high-level stimulus content in the absence of low-level confounds.
    Schindler A; Bartels A
    Neuroimage; 2016 May; 132():520-525. PubMed ID: 26975552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of corpus callosum for visual receptive fields of single neurons in cat superior colliculus.
    Antonini A; Berlucchi G; Marzi CA; Sprague JM
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):137-52. PubMed ID: 430108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic functional specificity can be predicted from fMRI signals in ventral visual areas.
    Kang D; Choi US; Sung YW
    Magn Reson Imaging; 2014 Oct; 32(8):1031-6. PubMed ID: 25012925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.