These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 29451895)

  • 1. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield.
    Wortel MT; Noor E; Ferris M; Bruggeman FJ; Liebermeister W
    PLoS Comput Biol; 2018 Feb; 14(2):e1006010. PubMed ID: 29451895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.
    Adadi R; Volkmer B; Milo R; Heinemann M; Shlomi T
    PLoS Comput Biol; 2012; 8(7):e1002575. PubMed ID: 22792053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilizing elementary mode analysis, pathway thermodynamics, and a genetic algorithm for metabolic flux determination and optimal metabolic network design.
    Boghigian BA; Shi H; Lee K; Pfeifer BA
    BMC Syst Biol; 2010 Apr; 4():49. PubMed ID: 20416071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of flux trade-offs in metabolic networks.
    Hashemi S; Razaghi-Moghadam Z; Nikoloski Z
    Sci Rep; 2021 Dec; 11(1):23776. PubMed ID: 34893666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.
    Klamt S; Müller S; Regensburger G; Zanghellini J
    Metab Eng; 2018 May; 47():153-169. PubMed ID: 29427605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic flux ratio analysis and multi-objective optimization revealed a globally conserved and coordinated metabolic response of E. coli to paraquat-induced oxidative stress.
    Shen T; Rui B; Zhou H; Zhang X; Yi Y; Wen H; Zheng H; Wu J; Shi Y
    Mol Biosyst; 2013 Jan; 9(1):121-32. PubMed ID: 23128557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic states with maximal specific rate carry flux through an elementary flux mode.
    Wortel MT; Peters H; Hulshof J; Teusink B; Bruggeman FJ
    FEBS J; 2014 Mar; 281(6):1547-55. PubMed ID: 24460934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the effects of the division of labor in metabolic pathways.
    Harvey E; Heys J; Gedeon T
    J Theor Biol; 2014 Nov; 360():222-242. PubMed ID: 25038317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models and molecular mechanisms for trade-offs in the context of metabolism.
    Hashemi S; Laitinen R; Nikoloski Z
    Mol Ecol; 2024 May; 33(10):e16879. PubMed ID: 36773330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SSDesign: Computational metabolic pathway design based on flux variability using elementary flux modes.
    Toya Y; Shiraki T; Shimizu H
    Biotechnol Bioeng; 2015 Apr; 112(4):759-68. PubMed ID: 25408191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization.
    Noor E; Flamholz A; Bar-Even A; Davidi D; Milo R; Liebermeister W
    PLoS Comput Biol; 2016 Nov; 12(11):e1005167. PubMed ID: 27812109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OptMDFpathway: Identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO2 fixation potential of Escherichia coli.
    Hädicke O; von Kamp A; Aydogan T; Klamt S
    PLoS Comput Biol; 2018 Sep; 14(9):e1006492. PubMed ID: 30248096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states.
    Carlson R; Srienc F
    Biotechnol Bioeng; 2004 Apr; 86(2):149-62. PubMed ID: 15052634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-scale metabolic modelling when changes in environmental conditions affect biomass composition.
    Schulz C; Kumelj T; Karlsen E; Almaas E
    PLoS Comput Biol; 2021 May; 17(5):e1008528. PubMed ID: 34029317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintaining maximal metabolic flux by gene expression control.
    Planqué R; Hulshof J; Teusink B; Hendriks JC; Bruggeman FJ
    PLoS Comput Biol; 2018 Sep; 14(9):e1006412. PubMed ID: 30235207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biophysical mechanisms that maintain biodiversity through trade-offs.
    Meyer JR; Gudelj I; Beardmore R
    Nat Commun; 2015 Feb; 6():6278. PubMed ID: 25695944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimizing enzyme mass to decompose flux distribution for identifying biologically relevant elementary flux modes.
    Chen J; Huang Y; Zhong C
    Biosystems; 2023 Sep; 231():104981. PubMed ID: 37442363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.