These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 29452147)
61. Imaging heterogeneity in the mitochondrial redox state of premalignant pancreas in the pancreas-specific PTEN-null transgenic mouse model. Xu HN; Nioka S; Li LZ Biomark Res; 2013 Jan; 1(1):6. PubMed ID: 24252270 [TBL] [Abstract][Full Text] [Related]
62. Utilizing past and present mouse systems to engineer more relevant pancreatic cancer models. DeCant BT; Principe DR; Guerra C; Pasca di Magliano M; Grippo PJ Front Physiol; 2014; 5():464. PubMed ID: 25538623 [TBL] [Abstract][Full Text] [Related]
63. Pancreatic cancer: Mouse models link metabolism and deubiquitination with Kras. Kirk R Nat Rev Clin Oncol; 2012 May; 9(7):368. PubMed ID: 22584999 [No Abstract] [Full Text] [Related]
64. The mTOR Targets 4E-BP1/2 Restrain Tumor Growth and Promote Hypoxia Tolerance in PTEN-driven Prostate Cancer. Ding M; Van der Kwast TH; Vellanki RN; Foltz WD; McKee TD; Sonenberg N; Pandolfi PP; Koritzinsky M; Wouters BG Mol Cancer Res; 2018 Apr; 16(4):682-695. PubMed ID: 29453322 [TBL] [Abstract][Full Text] [Related]
65. PTEN status determines chemosensitivity to proteasome inhibition in cholangiocarcinoma. Jiang TY; Pan YF; Wan ZH; Lin YK; Zhu B; Yuan ZG; Ma YH; Shi YY; Zeng TM; Dong LW; Tan YX; Wang HY Sci Transl Med; 2020 Sep; 12(562):. PubMed ID: 32967970 [TBL] [Abstract][Full Text] [Related]
66. Hill MA; Alexander WB; Guo B; Kato Y; Patra K; O'Dell MR; McCall MN; Whitney-Miller CL; Bardeesy N; Hezel AF Cancer Res; 2018 Aug; 78(16):4445-4451. PubMed ID: 29871934 [TBL] [Abstract][Full Text] [Related]
67. PTEN deficiency facilitates the therapeutic vulnerability to proteasome inhibitor bortezomib in gallbladder cancer. Jiang TY; Feng XF; Fang Z; Cui XW; Lin YK; Pan YF; Yang C; Ding ZW; Zhang YJ; Tan YX; Wang HY; Dong LW Cancer Lett; 2021 Mar; 501():187-199. PubMed ID: 33220333 [TBL] [Abstract][Full Text] [Related]
68. RPB5-Mediating Protein Promotes Cholangiocarcinoma Tumorigenesis and Drug Resistance by Competing With NRF2 for KEAP1 Binding. Wan ZH; Jiang TY; Shi YY; Pan YF; Lin YK; Ma YH; Yang C; Feng XF; Huang LF; Kong XN; Ding ZW; Tan YX; Dong LW; Wang HY Hepatology; 2020 Jun; 71(6):2005-2022. PubMed ID: 31541481 [TBL] [Abstract][Full Text] [Related]
69. A Mouse Model of Cholangiocarcinoma Uncovers a Role for Tensin-4 in Tumor Progression. Di-Luoffo M; Pirenne S; Saandi T; Loriot A; Gérard C; Dauguet N; Manzano-Núñez F; Alves Souza Carvalhais N; Lamoline F; Cordi S; Konobrocka K; De Greef V; Komuta M; Halder G; Jacquemin P; Lemaigre FP Hepatology; 2021 Sep; 74(3):1445-1460. PubMed ID: 33768568 [TBL] [Abstract][Full Text] [Related]
70. Cell of origin in biliary tract cancers and clinical implications. Moeini A; Haber PK; Sia D JHEP Rep; 2021 Apr; 3(2):100226. PubMed ID: 33665585 [TBL] [Abstract][Full Text] [Related]
71. Glypican-3-targeted precision diagnosis of hepatocellular carcinoma on clinical sections with a supramolecular 2D imaging probe. Han HH; Qiu YJ; Shi YY; Wen W; He XP; Dong LW; Tan YX; Long YT; Tian H; Wang HY Theranostics; 2018; 8(12):3268-3274. PubMed ID: 29930728 [TBL] [Abstract][Full Text] [Related]
72. Focal adhesion kinase (FAK) promotes cholangiocarcinoma development and progression via YAP activation. Song X; Xu H; Wang P; Wang J; Affo S; Wang H; Xu M; Liang B; Che L; Qiu W; Schwabe RF; Chang TT; Vogl M; Pes GM; Ribback S; Evert M; Chen X; Calvisi DF J Hepatol; 2021 Oct; 75(4):888-899. PubMed ID: 34052254 [TBL] [Abstract][Full Text] [Related]
73. Loss of Fbxw7 synergizes with activated Akt signaling to promote c-Myc dependent cholangiocarcinogenesis. Wang J; Wang H; Peters M; Ding N; Ribback S; Utpatel K; Cigliano A; Dombrowski F; Xu M; Chen X; Song X; Che L; Evert M; Cossu A; Gordan J; Zeng Y; Chen X; Calvisi DF J Hepatol; 2019 Oct; 71(4):742-752. PubMed ID: 31195063 [TBL] [Abstract][Full Text] [Related]
76. PTEN deficiency induces an extrahepatic cholangitis-cholangiocarcinoma continuum via aurora kinase A in mice. Yang Y; Wang J; Wan J; Cheng Q; Cheng Z; Zhou X; Wang O; Shi K; Wang L; Wang B; Zhu X; Chen J; Feng D; Liu Y; Jahan-Mihan Y; Haddock AN; Edenfield BH; Peng G; Hohenstein JD; McCabe CE; O'Brien DR; Wang C; Ilyas SI; Jiang L; Torbenson MS; Wang H; Nakhleh RE; Shi X; Wang Y; Bi Y; Gores GJ; Patel T; Ji B J Hepatol; 2024 Jul; 81(1):120-134. PubMed ID: 38428643 [TBL] [Abstract][Full Text] [Related]
78. A novel murine model of combined hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Xu RC; Wang F; Sun JL; Abuduwaili W; Zhang GC; Liu ZY; Liu TT; Dong L; Shen XZ; Zhu JM J Transl Med; 2022 Dec; 20(1):579. PubMed ID: 36494846 [TBL] [Abstract][Full Text] [Related]
79. Development of extrahepatic bile ducts and mechanisms of tumorigenesis: Lessons from mouse models. Tomita H; Hara A Pathol Int; 2022 Dec; 72(12):589-605. PubMed ID: 36349994 [TBL] [Abstract][Full Text] [Related]
80. Selecting an Appropriate Experimental Animal Model for Cholangiocarcinoma Research. Li M; Zhou X; Wang W; Ji B; Shao Y; Du Q; Yao J; Yang Y J Clin Transl Hepatol; 2022 Aug; 10(4):700-710. PubMed ID: 36062286 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]