These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 29452171)

  • 1. Evolution of model specific relative growth rate: Its genesis and performance over Fisher's growth rates.
    Pal A; Bhowmick AR; Yeasmin F; Bhattacharya S
    J Theor Biol; 2018 May; 444():11-27. PubMed ID: 29452171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Instantaneous maturity rate: a novel and compact characterization of biological growth curve models.
    Chakraborty B; Bhowmick AR; Chattopadhyay J; Bhattacharya S
    J Biol Phys; 2022 Sep; 48(3):295-319. PubMed ID: 35779141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisiting and redefining return rate for determination of the precise growth status of a species.
    Paul A; Chatterjee N; Bhattacharya S
    J Biol Phys; 2023 Jun; 49(2):195-234. PubMed ID: 36947291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Unification Method to Characterize a Broad Class of Growth Curve Models Using Relative Growth Rate.
    Chakraborty B; Bhowmick AR; Chattopadhyay J; Bhattacharya S
    Bull Math Biol; 2019 Jul; 81(7):2529-2552. PubMed ID: 31175548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new growth curve model for biological growth: some inferential studies on the growth of Cirrhinus mrigala.
    Bhowmick AR; Bhattacharya S
    Math Biosci; 2014 Aug; 254():28-41. PubMed ID: 24933474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous identification of growth law and estimation of its rate parameter for biological growth data: a new approach.
    Bhowmick AR; Chattopadhyay G; Bhattacharya S
    J Biol Phys; 2014 Jan; 40(1):71-95. PubMed ID: 24402566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative growth rate (RGR) and other confounded variables: mathematical problems and biological solutions.
    Lamont BB; Williams MR; He T
    Ann Bot; 2023 Apr; 131(4):555-568. PubMed ID: 36794962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partitioning the components of relative growth rate: how important is plant size variation?
    Rees M; Osborne CP; Woodward FI; Hulme SP; Turnbull LA; Taylor SH
    Am Nat; 2010 Dec; 176(6):E152-61. PubMed ID: 20950150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables.
    Katsikatsou M; Moustaki I
    Psychometrika; 2016 Dec; 81(4):1046-1068. PubMed ID: 27734296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normative human brain volume growth.
    Peterson M; Warf BC; Schiff SJ
    J Neurosurg Pediatr; 2018 May; 21(5):478-485. PubMed ID: 29498607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quadratic inference functions for varying-coefficient models with longitudinal data.
    Qu A; Li R
    Biometrics; 2006 Jun; 62(2):379-91. PubMed ID: 16918902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited-information goodness-of-fit testing of diagnostic classification item response models.
    Hansen M; Cai L; Monroe S; Li Z
    Br J Math Stat Psychol; 2016 Nov; 69(3):225-252. PubMed ID: 27404336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A likelihood ratio statistic for testing goodness of fit with randomly censored data.
    Turnbull BW; Weiss L
    Biometrics; 1978 Sep; 34(3):367-75. PubMed ID: 719120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative growth rate in relation to physiological and morphological traits for northern hardwood tree seedlings: species, light environment and ontogenetic considerations.
    Walters MB; Kruger EL; Reich PB
    Oecologia; 1993 Nov; 96(2):219-231. PubMed ID: 28313418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A unified approach to the Richards-model family for use in growth analyses: why we need only two model forms.
    Tjørve E; Tjørve KM
    J Theor Biol; 2010 Dec; 267(3):417-25. PubMed ID: 20831877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classical mathematical models for description and prediction of experimental tumor growth.
    Benzekry S; Lamont C; Beheshti A; Tracz A; Ebos JM; Hlatky L; Hahnfeldt P
    PLoS Comput Biol; 2014 Aug; 10(8):e1003800. PubMed ID: 25167199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empirical growth curve estimation considering multiple seasonal compensatory growths of body weights in Japanese Thoroughbred colts and fillies.
    Onoda T; Yamamoto R; Sawamura K; Inoue Y; Murase H; Nambo Y; Tozaki T; Matsui A; Miyake T; Hirai N
    J Anim Sci; 2013 Dec; 91(12):5599-604. PubMed ID: 24085406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing Hardy-Weinberg equilibrium with a simple root-mean-square statistic.
    Ward R; Carroll RJ
    Biostatistics; 2014 Jan; 15(1):74-86. PubMed ID: 23975799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of the recursion formula of the Gompertz survival function to evaluate life-table data.
    Bassukas ID
    Mech Ageing Dev; 1996 Aug; 89(3):155-63. PubMed ID: 8844636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using the EM algorithm to weight data sets of unknown precision when modelling fish stocks.
    Cotter AJ; Buckland ST
    Math Biosci; 2004 Jul; 190(1):1-7. PubMed ID: 15172800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.