These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 29452235)
1. Improved strength of silk fibers in Bombyx mori trimolters induced by an anti-juvenile hormone compound. Guo K; Dong Z; Zhang Y; Wang D; Tang M; Zhang X; Xia Q; Zhao P Biochim Biophys Acta Gen Subj; 2018 May; 1862(5):1148-1156. PubMed ID: 29452235 [TBL] [Abstract][Full Text] [Related]
2. Ultrafine and High-Strength Silk Fibers Secreted by Bimolter Silkworms. Guo K; Zhang X; Dong Z; Ni Y; Chen Y; Zhang Y; Li H; Xia Q; Zhao P Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33143336 [TBL] [Abstract][Full Text] [Related]
3. Effect of UV-light on the uniaxial tensile properties and structure of uncoated and TiO2 coated Bombyx mori silk fibers. Aksakal B; Koç K; Yargı Ö; Tsobkallo K Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():658-65. PubMed ID: 25746557 [TBL] [Abstract][Full Text] [Related]
4. Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms. Zhu Z; Kikuchi Y; Kojima K; Tamura T; Kuwabara N; Nakamura T; Asakura T J Biomater Sci Polym Ed; 2010; 21(3):395-411. PubMed ID: 20178693 [TBL] [Abstract][Full Text] [Related]
5. Ca2+ and endoplasmic reticulum Ca2+-ATPase regulate the formation of silk fibers with favorable mechanical properties. Wang X; Li Y; Xie K; Yi Q; Chen Q; Wang X; Shen H; Xia Q; Zhao P J Insect Physiol; 2015 Feb; 73():53-9. PubMed ID: 25602367 [TBL] [Abstract][Full Text] [Related]
6. In vivo effects of metal ions on conformation and mechanical performance of silkworm silks. Wang X; Li Y; Liu Q; Chen Q; Xia Q; Zhao P Biochim Biophys Acta Gen Subj; 2017 Mar; 1861(3):567-576. PubMed ID: 27865996 [TBL] [Abstract][Full Text] [Related]
7. Effect of polyamines on mechanical and structural properties of Bombyx mori silk. Yerra A; Mysarla DK; Siripurapu P; Jha A; Valluri SV; Mamillapalli A Biopolymers; 2017 Jan; 107(1):20-27. PubMed ID: 27593708 [TBL] [Abstract][Full Text] [Related]
8. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Ayutsede J; Gandhi M; Sukigara S; Ye H; Hsu CM; Gogotsi Y; Ko F Biomacromolecules; 2006 Jan; 7(1):208-14. PubMed ID: 16398517 [TBL] [Abstract][Full Text] [Related]
9. Disruption of the Metal Ion Environment by EDTA for Silk Formation Affects the Mechanical Properties of Silkworm Silk. Liu Q; Wang X; Tan X; Xie X; Dong H; Li X; Li Y; Zhao P; Xia Q Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31234286 [TBL] [Abstract][Full Text] [Related]
10. Impact of crystalline domains on long-term stability and mechanical performance of anisotropic silk fibroin sponges. Aikman EL; Rao AP; Jia Y; Fussell EE; Trumbull KE; Sampath J; Stoppel WL J Biomed Mater Res A; 2024 Sep; 112(9):1451-1471. PubMed ID: 38469675 [TBL] [Abstract][Full Text] [Related]
11. Forced reeling of Bombyx mori silk: separating behavior and processing conditions. Mortimer B; Holland C; Vollrath F Biomacromolecules; 2013 Oct; 14(10):3653-9. PubMed ID: 24004380 [TBL] [Abstract][Full Text] [Related]
12. Mulberry non-engineered silk gland protein vis-à-vis silk cocoon protein engineered by silkworms as biomaterial matrices. Kundu J; Dewan M; Ghoshal S; Kundu SC J Mater Sci Mater Med; 2008 Jul; 19(7):2679-89. PubMed ID: 18283532 [TBL] [Abstract][Full Text] [Related]
13. Conformation transition kinetics of Bombyx mori silk protein. Chen X; Shao Z; Knight DP; Vollrath F Proteins; 2007 Jul; 68(1):223-31. PubMed ID: 17436322 [TBL] [Abstract][Full Text] [Related]
14. Preparation of silk resins by hot pressing Bombyx mori and Eri silk powders. Tuan HA; Hirai S; Tamada Y; Akioka S Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():431-437. PubMed ID: 30678929 [TBL] [Abstract][Full Text] [Related]
15. Comparing the microstructure and mechanical properties of Bombyx mori and Antheraea pernyi cocoon composites. Guan J; Zhu W; Liu B; Yang K; Vollrath F; Xu J Acta Biomater; 2017 Jan; 47():60-70. PubMed ID: 27693687 [TBL] [Abstract][Full Text] [Related]
16. Structural changes of Bombyx mori fibroin from silk gland to fiber as evidenced by Terahertz spectroscopy and other methods. Wu X; Wu X; Shao M; Yang B Int J Biol Macromol; 2017 Sep; 102():1202-1210. PubMed ID: 28487194 [TBL] [Abstract][Full Text] [Related]
17. Structural and Mechanical Properties of Silk from Different Instars of Bombyx mori. Peng Z; Yang X; Liu C; Dong Z; Wang F; Wang X; Hu W; Zhang X; Zhao P; Xia Q Biomacromolecules; 2019 Mar; 20(3):1203-1216. PubMed ID: 30702870 [TBL] [Abstract][Full Text] [Related]
18. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Ha SW; Tonelli AE; Hudson SM Biomacromolecules; 2005; 6(3):1722-31. PubMed ID: 15877399 [TBL] [Abstract][Full Text] [Related]
19. Comparing the properties of Bombyx mori silk cocoons against sericin-fibroin regummed biocomposite sheets. Morin A; Alam P Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():215-20. PubMed ID: 27157746 [TBL] [Abstract][Full Text] [Related]
20. Thermal behavior of Bombyx mori silk: evolution of crystalline parameters, molecular structure, and mechanical properties. Martel A; Burghammer M; Davies RJ; Riekel C Biomacromolecules; 2007 Nov; 8(11):3548-56. PubMed ID: 17949104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]