BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 29452388)

  • 1. Structural and functional changes in coffee trees after 4 years under free air CO2 enrichment.
    Rakocevic M; Ribeiro RV; Ribeiro Marchiori PE; Filizola HF; Batista ER
    Ann Bot; 2018 Apr; 121(5):1065-1078. PubMed ID: 29452388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variations in leaf growth parameters within the tree structure of adult Coffea arabica in relation to seasonal growth, water availability and air carbon dioxide concentration.
    Rakocevic M; Matsunaga FT
    Ann Bot; 2018 Jun; 122(1):117-131. PubMed ID: 29659697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term elevated air [CO2 ] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species.
    Rodrigues WP; Martins MQ; Fortunato AS; Rodrigues AP; Semedo JN; Simões-Costa MC; Pais IP; Leitão AE; Colwell F; Goulao L; Máguas C; Maia R; Partelli FL; Campostrini E; Scotti-Campos P; Ribeiro-Barros AI; Lidon FC; DaMatta FM; Ramalho JC
    Glob Chang Biol; 2016 Jan; 22(1):415-31. PubMed ID: 26363182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf gas exchange and bean quality fluctuations over the whole canopy vertical profile of Arabic coffee cultivated under elevated CO
    Rakocevic M; Batista ER; Pazianotto RAA; Scholz MBS; Souza GAR; Campostrini E; Ramalho JC
    Funct Plant Biol; 2021 Apr; 48(5):469-482. PubMed ID: 33423738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.
    Uddling J; Teclaw RM; Pregitzer KS; Ellsworth DS
    Tree Physiol; 2009 Nov; 29(11):1367-80. PubMed ID: 19773339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: disentangling the contributions of stomatal, mesophyll, and biochemical limitations.
    DaMatta FM; Godoy AG; Menezes-Silva PE; Martins SC; Sanglard LM; Morais LE; Torre-Neto A; Ghini R
    J Exp Bot; 2016 Jan; 67(1):341-52. PubMed ID: 26503540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Panicum maximum.
    Habermann E; San Martin JAB; Contin DR; Bossan VP; Barboza A; Braga MR; Groppo M; Martinez CA
    PLoS One; 2019; 14(2):e0212506. PubMed ID: 30779815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Responses of agricultural crops of free-air CO2 enrichment].
    Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize.
    Hussain MZ; Vanloocke A; Siebers MH; Ruiz-Vera UM; Cody Markelz RJ; Leakey AD; Ort DR; Bernacchi CJ
    Glob Chang Biol; 2013 May; 19(5):1572-84. PubMed ID: 23505040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange.
    Zhu J; Dai Z; Vivin P; Gambetta GA; Henke M; Peccoux A; Ollat N; Delrot S
    Ann Bot; 2018 Apr; 121(5):833-848. PubMed ID: 29293870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2].
    Ramalho JC; Rodrigues AP; Semedo JN; Pais IP; Martins LD; Simões-Costa MC; Leitão AE; Fortunato AS; Batista-Santos P; Palos IM; Tomaz MA; Scotti-Campos P; Lidon FC; DaMatta FM
    PLoS One; 2013; 8(12):e82712. PubMed ID: 24324823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.
    Shimono H; Nakamura H; Hasegawa T; Okada M
    Glob Chang Biol; 2013 Aug; 19(8):2444-53. PubMed ID: 23564676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.
    Locke AM; Sack L; Bernacchi CJ; Ort DR
    Ann Bot; 2013 Sep; 112(5):911-8. PubMed ID: 23864003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing canopy photosynthesis in rice can be achieved without a large increase in water use-A model based on free-air CO
    Ikawa H; Chen CP; Sikma M; Yoshimoto M; Sakai H; Tokida T; Usui Y; Nakamura H; Ono K; Maruyama A; Watanabe T; Kuwagata T; Hasegawa T
    Glob Chang Biol; 2018 Mar; 24(3):1321-1341. PubMed ID: 29136323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought.
    Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT
    Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon gain is coordinated with enhanced stomatal conductance and hydraulic architecture in coffee plants acclimated to elevated [CO
    de Oliveira US; de Souza AH; de Andrade MT; Oliveira LA; Gouvea DG; Martins SCV; Ramalho JDC; Cardoso AA; DaMatta FM
    Plant Physiol Biochem; 2023 Nov; 204():108145. PubMed ID: 37907041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy.
    Tor-ngern P; Oren R; Ward EJ; Palmroth S; McCarthy HR; Domec JC
    New Phytol; 2015 Jan; 205(2):518-25. PubMed ID: 25346045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2.
    Tricker PJ; Trewin H; Kull O; Clarkson GJ; Eensalu E; Tallis MJ; Colella A; Doncaster CP; Sabatti M; Taylor G
    Oecologia; 2005 May; 143(4):652-60. PubMed ID: 15909132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf anatomical traits which accommodate the facultative engagement of crassulacean acid metabolism in tropical trees of the genus Clusia.
    Barrera Zambrano VA; Lawson T; Olmos E; Fernández-García N; Borland AM
    J Exp Bot; 2014 Jul; 65(13):3513-23. PubMed ID: 24510939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field.
    Tissue DT; Lewis JD; Wullschleger SD; Amthor JS; Griffin KL; Anderson OR
    Tree Physiol; 2002 Nov; 22(15-16):1157-66. PubMed ID: 12414375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.