BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 29452575)

  • 1. A machine learning approach to detect changes in gait parameters following a fatiguing occupational task.
    Baghdadi A; Megahed FM; Esfahani ET; Cavuoto LA
    Ergonomics; 2018 Aug; 61(8):1116-1129. PubMed ID: 29452575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features.
    Teufl W; Taetz B; Miezal M; Lorenz M; Pietschmann J; Jöllenbeck T; Fröhlich M; Bleser G
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31744141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification Model for Discriminating Trunk Fatigue During Running.
    Halkiadakis Y; Alzakerin HM; Morgan KD
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4546-4549. PubMed ID: 34892228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring Biomechanical Risk in Lifting Load Tasks Through Wearable System and Machine-Learning Approach.
    Conforti I; Mileti I; Del Prete Z; Palermo E
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32168844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial sensor-based gait parameters reflect patient-reported fatigue in multiple sclerosis.
    Ibrahim AA; Küderle A; Gaßner H; Klucken J; Eskofier BM; Kluge F
    J Neuroeng Rehabil; 2020 Dec; 17(1):165. PubMed ID: 33339530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Systematic Comparison of Age and Gender Prediction on IMU Sensor-Based Gait Traces.
    Van Hamme T; Garofalo G; Argones Rúa E; Preuveneers D; Joosen W
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of walking activity and gait to identify physical and mental fatigue in neurodegenerative and immune disorders: preliminary insights from the IDEA-FAST feasibility study.
    Hinchliffe C; Rehman RZU; Pinaud C; Branco D; Jackson D; Ahmaniemi T; Guerreiro T; Chatterjee M; Manyakov NV; Pandis I; Davies K; Macrae V; Aufenberg S; Paulides E; Hildesheim H; Kudelka J; Emmert K; Van Gassen G; Rochester L; van der Woude CJ; Reilmann R; Maetzler W; Ng WF; Del Din S;
    J Neuroeng Rehabil; 2024 Jun; 21(1):94. PubMed ID: 38840208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple inertial measurement unit combination and location for recognizing general, fatigue, and simulated-fatigue gait.
    Lee YJ; Wei MY; Chen YJ
    Gait Posture; 2022 Jul; 96():330-337. PubMed ID: 35785657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple-Wearable-Sensor-Based Gait Classification and Analysis in Patients with Neurological Disorders.
    Hsu WC; Sugiarto T; Lin YJ; Yang FC; Lin ZY; Sun CT; Hsu CL; Chou KN
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30314269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smartphone-based human fatigue level detection using machine learning approaches.
    Karvekar S; Abdollahi M; Rashedi E
    Ergonomics; 2021 May; 64(5):600-612. PubMed ID: 33393439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors.
    Zhang J; Lockhart TE; Soangra R
    Ann Biomed Eng; 2014 Mar; 42(3):600-12. PubMed ID: 24081829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Data-Driven Approach to Physical Fatigue Management Using Wearable Sensors to Classify Four Diagnostic Fatigue States.
    Pinto-Bernal MJ; Cifuentes CA; Perdomo O; Rincón-Roncancio M; Múnera M
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue Monitoring in Running Using Flexible Textile Wearable Sensors.
    Gholami M; Napier C; Patiño AG; Cuthbert TJ; Menon C
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 33003316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IMU, sEMG, or their cross-correlation and temporal similarities: Which signal features detect lateral compensatory balance reactions more accurately?
    Nouredanesh M; Tung J
    Comput Methods Programs Biomed; 2019 Dec; 182():105003. PubMed ID: 31465977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning based Human Gait Segmentation with Wearable Sensor Platform.
    Potluri S; Chandran AB; Diedrich C; Schega L
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():588-594. PubMed ID: 31945967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Machine Learning-Based Detection of Running-Induced Fatigue in Real-World Scenarios: Evaluation of IMU Sensor Configurations to Reduce Intrusiveness.
    Marotta L; Buurke JH; van Beijnum BF; Reenalda J
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34063478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable Sensor Data to Track Subject-Specific Movement Patterns Related to Clinical Outcomes Using a Machine Learning Approach.
    Kobsar D; Ferber R
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IMU-Based Classification of Parkinson's Disease From Gait: A Sensitivity Analysis on Sensor Location and Feature Selection.
    Caramia C; Torricelli D; Schmid M; Munoz-Gonzalez A; Gonzalez-Vargas J; Grandas F; Pons JL
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1765-1774. PubMed ID: 30106745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.