BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 29452638)

  • 1. NADH Shuttling Couples Cytosolic Reductive Carboxylation of Glutamine with Glycolysis in Cells with Mitochondrial Dysfunction.
    Gaude E; Schmidt C; Gammage PA; Dugourd A; Blacker T; Chew SP; Saez-Rodriguez J; O'Neill JS; Szabadkai G; Minczuk M; Frezza C
    Mol Cell; 2018 Feb; 69(4):581-593.e7. PubMed ID: 29452638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure.
    Wilkins HM; Koppel S; Carl SM; Ramanujan S; Weidling I; Michaelis ML; Michaelis EK; Swerdlow RH
    J Neurochem; 2016 Apr; 137(1):76-87. PubMed ID: 26811028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine-Tuning Mitochondrial Dysfunction and Reductive Carboxylation.
    Halbrook CJ; Nwosu ZC; Lyssiotis CA
    Trends Endocrinol Metab; 2018 Sep; 29(9):599-602. PubMed ID: 29692332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle.
    Gameiro PA; Laviolette LA; Kelleher JK; Iliopoulos O; Stephanopoulos G
    J Biol Chem; 2013 May; 288(18):12967-77. PubMed ID: 23504317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.
    Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME
    J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast.
    Easlon E; Tsang F; Skinner C; Wang C; Lin SJ
    Genes Dev; 2008 Apr; 22(7):931-44. PubMed ID: 18381895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malate-citrate cycle during glycolysis and glutaminolysis in Ehrlich ascites tumor cells.
    Pérez-Rodríguez J; Sánchez-Jiménez F; Márquez FJ; Medina MA; Quesada AR; Núñez de Castro I
    Biochimie; 1987 May; 69(5):469-74. PubMed ID: 3118962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.
    Greenhouse WV; Lehninger AL
    Cancer Res; 1977 Nov; 37(11):4173-81. PubMed ID: 198130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of pyruvate, malate, citrate, and cytosolic reducing equivalents by AS-30D hepatoma mitochondria.
    Dietzen DJ; Davis EJ
    Arch Biochem Biophys; 1993 Aug; 305(1):91-102. PubMed ID: 8342959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox control of glutamine utilization in cancer.
    Alberghina L; Gaglio D
    Cell Death Dis; 2014 Dec; 5(12):e1561. PubMed ID: 25476909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of cytosolic NADH by the malate-aspartate shuttle in HuH13 human hepatoma cells.
    Matsuno T
    Int J Biochem; 1992 Feb; 24(2):313-5. PubMed ID: 1310290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversal of mitochondrial malate dehydrogenase 2 enables anaplerosis via redox rescue in respiration-deficient cells.
    Altea-Manzano P; Vandekeere A; Edwards-Hicks J; Roldan M; Abraham E; Lleshi X; Guerrieri AN; Berardi D; Wills J; Junior JM; Pantazi A; Acosta JC; Sanchez-Martin RM; Fendt SM; Martin-Hernandez M; Finch AJ
    Mol Cell; 2022 Dec; 82(23):4537-4547.e7. PubMed ID: 36327975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The malate-aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway.
    Borst P
    IUBMB Life; 2020 Nov; 72(11):2241-2259. PubMed ID: 32916028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of cytosolic NADH by the malate-aspartate shuttle in MC29 hepatoma cells.
    Matsuno T
    Cell Biol Int Rep; 1989 Sep; 13(9):739-45. PubMed ID: 2805084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytosolic malate dehydrogenase activity helps support glycolysis in actively proliferating cells and cancer.
    Hanse EA; Ruan C; Kachman M; Wang D; Lowman XH; Kelekar A
    Oncogene; 2017 Jul; 36(27):3915-3924. PubMed ID: 28263970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive carboxylation supports redox homeostasis during anchorage-independent growth.
    Jiang L; Shestov AA; Swain P; Yang C; Parker SJ; Wang QA; Terada LS; Adams ND; McCabe MT; Pietrak B; Schmidt S; Metallo CM; Dranka BP; Schwartz B; DeBerardinis RJ
    Nature; 2016 Apr; 532(7598):255-8. PubMed ID: 27049945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts.
    Lee SM; Dho SH; Ju SK; Maeng JS; Kim JY; Kwon KS
    Biogerontology; 2012 Oct; 13(5):525-36. PubMed ID: 22971926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects.
    Mullen AR; Hu Z; Shi X; Jiang L; Boroughs LK; Kovacs Z; Boriack R; Rakheja D; Sullivan LB; Linehan WM; Chandel NS; DeBerardinis RJ
    Cell Rep; 2014 Jun; 7(5):1679-1690. PubMed ID: 24857658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on associations of glycolytic and glutaminolytic enzymes in MCF-7 cells: role of P36.
    Mazurek S; Hugo F; Failing K; Eigenbrodt E
    J Cell Physiol; 1996 May; 167(2):238-50. PubMed ID: 8613464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion.
    Eto K; Tsubamoto Y; Terauchi Y; Sugiyama T; Kishimoto T; Takahashi N; Yamauchi N; Kubota N; Murayama S; Aizawa T; Akanuma Y; Aizawa S; Kasai H; Yazaki Y; Kadowaki T
    Science; 1999 Feb; 283(5404):981-5. PubMed ID: 9974390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.