BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 29452810)

  • 1. Interleukin-6 is both necessary and sufficient to produce perioperative neurocognitive disorder in mice.
    Hu J; Feng X; Valdearcos M; Lutrin D; Uchida Y; Koliwad SK; Maze M
    Br J Anaesth; 2018 Mar; 120(3):537-545. PubMed ID: 29452810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interleukin-6 trans-signalling in hippocampal CA1 neurones mediates perioperative neurocognitive disorders in mice.
    Hu J; Zhang Y; Huang C; Feng X; He S; Zhang Y; Maze M
    Br J Anaesth; 2022 Dec; 129(6):923-936. PubMed ID: 36253222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complement activation contributes to perioperative neurocognitive disorders in mice.
    Xiong C; Liu J; Lin D; Zhang J; Terrando N; Wu A
    J Neuroinflammation; 2018 Sep; 15(1):254. PubMed ID: 30180861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IL-17A contributes to perioperative neurocognitive disorders through blood-brain barrier disruption in aged mice.
    Ni P; Dong H; Wang Y; Zhou Q; Xu M; Qian Y; Sun J
    J Neuroinflammation; 2018 Nov; 15(1):332. PubMed ID: 30501622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interleukin-33 ameliorates perioperative neurocognitive disorders by modulating microglial state.
    Yang D; Sun Y; Lin D; Li S; Zhang Y; Wu A; Wei C
    Neuropharmacology; 2024 Aug; 253():109982. PubMed ID: 38701943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TLR4-mediated hippocampal MMP/TIMP imbalance contributes to the aggravation of perioperative neurocognitive disorder in db/db mice.
    Zhang Y; Liu H; Chen Z; Yu M; Li J; Dong H; Li N; Ding X; Ge Y; Liu C; Ma T; Gui B
    Neurochem Int; 2020 Nov; 140():104818. PubMed ID: 32758588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of oral β-caryophyllene (BCP) treatment on perioperative neurocognitive disorders: Attenuation of neuroinflammation associated with microglial activation and reinforcement of autophagy activity in aged mice.
    Chen F; Bai N; Yue F; Hao Y; Wang H; He Y; Lu K
    Brain Res; 2023 Sep; 1815():148425. PubMed ID: 37244603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The broad spectrum mixed-lineage kinase 3 inhibitor URMC-099 prevents acute microgliosis and cognitive decline in a mouse model of perioperative neurocognitive disorders.
    Miller-Rhodes P; Kong C; Baht GS; Saminathan P; Rodriguiz RM; Wetsel WC; Gelbard HA; Terrando N
    J Neuroinflammation; 2019 Oct; 16(1):193. PubMed ID: 31660984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurokinin-1 receptor antagonism improves postoperative neurocognitive disorder in mice.
    Li Z; Luo T; Ning X; Xiong C; Wu A
    Neurosci Lett; 2018 Nov; 687():189-195. PubMed ID: 30273701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemokine CXCL13 acts via CXCR5-ERK signaling in hippocampus to induce perioperative neurocognitive disorders in surgically treated mice.
    Shen Y; Zhang Y; Chen L; Du J; Bao H; Xing Y; Cai M; Si Y
    J Neuroinflammation; 2020 Nov; 17(1):335. PubMed ID: 33161894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depletion of bone marrow-derived macrophages perturbs the innate immune response to surgery and reduces postoperative memory dysfunction.
    Degos V; Vacas S; Han Z; van Rooijen N; Gressens P; Su H; Young WL; Maze M
    Anesthesiology; 2013 Mar; 118(3):527-36. PubMed ID: 23426204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IL-33/ST2 axis promotes remodeling of the extracellular matrix and drives protective microglial responses in the mouse model of perioperative neurocognitive disorders.
    Li S; Liu H; Qian Y; Jiang L; Liu S; Liu Y; Liu C; Gu X
    Int Immunopharmacol; 2023 Jan; 114():109479. PubMed ID: 36446234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perioperative use of cefazolin ameliorates postoperative cognitive dysfunction but induces gut inflammation in mice.
    Liang P; Shan W; Zuo Z
    J Neuroinflammation; 2018 Aug; 15(1):235. PubMed ID: 30134985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maresin 1 attenuates neuroinflammation in a mouse model of perioperative neurocognitive disorders.
    Yang T; Xu G; Newton PT; Chagin AS; Mkrtchian S; Carlström M; Zhang XM; Harris RA; Cooter M; Berger M; Maddipati KR; Akassoglou K; Terrando N
    Br J Anaesth; 2019 Mar; 122(3):350-360. PubMed ID: 30770053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of KCa3.1 channel activity in immediate perioperative cognitive and neuroinflammatory outcomes.
    Saxena S; Nuyens V; Rodts C; Jamar K; Albert A; Seidel L; Cherkaoui-Malki M; Boogaerts JG; Wulff H; Maze M; Kruys V; Vamecq J
    BMC Anesthesiol; 2023 Mar; 23(1):80. PubMed ID: 36927341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MD2 contributes to the pathogenesis of perioperative neurocognitive disorder via the regulation of α5GABA
    Zuo W; Zhao J; Zhang J; Fang Z; Deng J; Fan Z; Guo Y; Han J; Hou W; Dong H; Xu F; Xiong L
    J Neuroinflammation; 2021 Sep; 18(1):204. PubMed ID: 34530841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragmented Sleep Enhances Postoperative Neuroinflammation but Not Cognitive Dysfunction.
    Vacas S; Degos V; Maze M
    Anesth Analg; 2017 Jan; 124(1):270-276. PubMed ID: 27755058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The P38MAPK/ATF2 signaling pathway is involved in PND in mice.
    Zhu M; Long S; Tao Y; Zhang Z; Zhou Z; Wang X; Chen W
    Exp Brain Res; 2024 Jan; 242(1):109-121. PubMed ID: 37973625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of CD200-CD200R1 Axis Attenuates Perioperative Neurocognitive Disorder Through Inhibition of Neuroinflammation in Mice.
    Ma D; Liu J; Wei C; Shen W; Yang Y; Lin D; Wu A
    Neurochem Res; 2021 Dec; 46(12):3190-3199. PubMed ID: 34392443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential hippocampal protein expression between normal mice and mice with the perioperative neurocognitive disorder: a proteomic analysis.
    Li C; Li J; Tao H; Shan J; Liu F; Deng X; Lin Y; Lin X; Fu L; Wang B; Bi Y
    Eur J Med Res; 2021 Nov; 26(1):130. PubMed ID: 34732255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.