These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29452923)

  • 1. Statistical and machine learning approaches to predicting protein-ligand interactions.
    Colwell LJ
    Curr Opin Struct Biol; 2018 Apr; 49():123-128. PubMed ID: 29452923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):335-47. PubMed ID: 26357221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction.
    Liu X; Feng H; Wu J; Xia K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A D3R prospective evaluation of machine learning for protein-ligand scoring.
    Sunseri J; Ragoza M; Collins J; Koes DR
    J Comput Aided Mol Des; 2016 Sep; 30(9):761-771. PubMed ID: 27592011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting protein conformational changes for unbound and homology docking: learning from intrinsic and induced flexibility.
    Chen H; Sun Y; Shen Y
    Proteins; 2017 Mar; 85(3):544-556. PubMed ID: 27862345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K
    Jiménez J; Škalič M; Martínez-Rosell G; De Fabritiis G
    J Chem Inf Model; 2018 Feb; 58(2):287-296. PubMed ID: 29309725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. idDock+: Integrating Machine Learning in Probabilistic Search for Protein-Protein Docking.
    Hashmi I; Shehu A
    J Comput Biol; 2015 Sep; 22(9):806-22. PubMed ID: 26222714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the binding affinity estimations of protein-ligand complexes using machine-learning facilitated force field method.
    Soni A; Bhat R; Jayaram B
    J Comput Aided Mol Des; 2020 Aug; 34(8):817-830. PubMed ID: 32185583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning to Predict Binding Affinity.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():251-273. PubMed ID: 31452110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HEMEsPred: Structure-Based Ligand-Specific Heme Binding Residues Prediction by Using Fast-Adaptive Ensemble Learning Scheme.
    Zhang J; Chai H; Gao B; Yang G; Ma Z
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):147-156. PubMed ID: 28029626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and Sequence Similarity Makes a Significant Impact on Machine-Learning-Based Scoring Functions for Protein-Ligand Interactions.
    Li Y; Yang J
    J Chem Inf Model; 2017 Apr; 57(4):1007-1012. PubMed ID: 28358210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting cryptic ligand binding sites based on normal modes guided conformational sampling.
    Zheng W
    Proteins; 2021 Apr; 89(4):416-426. PubMed ID: 33244830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of protein-ligand interactions from paired protein sequence motifs and ligand substructures.
    Greenside P; Hillenmeyer M; Kundaje A
    Pac Symp Biocomput; 2018; 23():20-31. PubMed ID: 29218866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Protein-Protein Interaction Sites with Machine-Learning-Based Data-Cleaning and Post-Filtering Procedures.
    Liu GH; Shen HB; Yu DJ
    J Membr Biol; 2016 Apr; 249(1-2):141-53. PubMed ID: 26563228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. End-to-end sequence-structure-function meta-learning predicts genome-wide chemical-protein interactions for dark proteins.
    Cai T; Xie L; Zhang S; Chen M; He D; Badkul A; Liu Y; Namballa HK; Dorogan M; Harding WW; Mura C; Bourne PE; Xie L
    PLoS Comput Biol; 2023 Jan; 19(1):e1010851. PubMed ID: 36652496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning models for drug-target interactions: current knowledge and future directions.
    D'Souza S; Prema KV; Balaji S
    Drug Discov Today; 2020 Apr; 25(4):748-756. PubMed ID: 32171918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using attribution to decode binding mechanism in neural network models for chemistry.
    McCloskey K; Taly A; Monti F; Brenner MP; Colwell LJ
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):11624-11629. PubMed ID: 31127041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.