These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29453363)

  • 1. Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses.
    Lemos N; Cardoso L; Geada J; Figueira G; Albert F; Dias JM
    Sci Rep; 2018 Feb; 8(1):3165. PubMed ID: 29453363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guiding of intense laser pulses in plasma waveguides produced from efficient, femtosecond end-pumped heating of clustered gases.
    Kumarappan V; Kim KY; Milchberg HM
    Phys Rev Lett; 2005 May; 94(20):205004. PubMed ID: 16090259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clustered gases as a medium for efficient plasma waveguide generation.
    Milchberg HM; Kim KY; Kumarappan V; Layer BD; Sheng H
    Philos Trans A Math Phys Eng Sci; 2006 Mar; 364(1840):647-61. PubMed ID: 16483955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma waveguides efficiently generated by Bessel beams in elongated cluster gas jets.
    Sheng H; Kim KY; Kumarappan V; Layer BD; Milchberg HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036411. PubMed ID: 16241583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the length of plasma waveguide up to 5 mm, produced by femtosecond laser pulses in atomic clustered gas.
    Mohamed WT; Chen G; Kim J; Tao GX; Ahn J; Kim DE
    Opt Express; 2011 Aug; 19(17):15919-28. PubMed ID: 21934955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refraction effects associated with multiphoton ionization and ultrashort-pulse laser propagation in plasma waveguides.
    Rankin R; Capjack CE; Burnett NH; Corkum PB
    Opt Lett; 1991 Jun; 16(11):835-7. PubMed ID: 19776801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime.
    Leemans WP; Gonsalves AJ; Mao HS; Nakamura K; Benedetti C; Schroeder CB; Tóth C; Daniels J; Mittelberger DE; Bulanov SS; Vay JL; Geddes CG; Esarey E
    Phys Rev Lett; 2014 Dec; 113(24):245002. PubMed ID: 25541775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide.
    Butler A; Spence DJ; Hooker SM
    Phys Rev Lett; 2002 Oct; 89(18):185003. PubMed ID: 12398611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Guiding in Meter-Scale Plasma Waveguides.
    Miao B; Feder L; Shrock JE; Goffin A; Milchberg HM
    Phys Rev Lett; 2020 Aug; 125(7):074801. PubMed ID: 32857573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides.
    Navarro-Cía M; Wu J; Liu H; Mitrofanov O
    Sci Rep; 2016 Dec; 6():38926. PubMed ID: 27941845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femtosecond laser pulse generation with self-similar amplification of picosecond laser pulses.
    Song H; Liu B; Chen W; Li Y; Song Y; Wang S; Chai L; Wang C; Hu M
    Opt Express; 2018 Oct; 26(20):26411-26421. PubMed ID: 30469729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma waveguide formation in predissociated clustering gases.
    Ditmire T; Smith RA; Hutchinson MH
    Opt Lett; 1998 Mar; 23(5):322-4. PubMed ID: 18084499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generating nearly single-cycle pulses with increased intensity and strongly asymmetric pulses of petawatt level.
    Nam I; Kulagin VV; Hur MS; Lee IW; Suk H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026405. PubMed ID: 22463335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guiding radar signals by arrays of laser-induced filaments: finite-difference analysis.
    Musin RR; Shneider MN; Zheltikov AM; Miles RB
    Appl Opt; 2007 Aug; 46(23):5593-7. PubMed ID: 17694103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of ultra-broadband terahertz generation from sub-wavelength lithium niobate waveguides excited by few-cycle femtosecond laser pulses.
    Carnio BN; Elezzabi AY
    Opt Express; 2017 Aug; 25(17):20573-20583. PubMed ID: 29041736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing Local Temporal Profile of Laser Pulses of Intensity above 10
    Lu Q; Zhang X; Couairon A; Liu Y
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hollow-waveguide-based nanosecond, near-infrared pulsed laser ablation of tissue.
    Sato S; Shi YW; Matsuura Y; Miyagi M; Ashida H
    Lasers Surg Med; 2005 Aug; 37(2):149-54. PubMed ID: 16097010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two synchronized modes of ultrashort optical pulses in a two-beam pumped Ti:sapphire laser.
    Zhu C; Zhang G; Xue B; Zhai X
    Appl Opt; 2014 Sep; 53(27):6162-7. PubMed ID: 25322092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femtosecond filamentation of optical vortices for the generation of optical air waveguides.
    Fu S; Mahieu B; Mysyrowicz A; Houard A
    Opt Lett; 2022 Oct; 47(19):5228-5231. PubMed ID: 36181228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetic electrons emitted from ethanol droplets irradiated by femtosecond laser pulses.
    Peng XY; Zhang J; Jin Z; Liang TJ; Sheng ZM; Li YT; Yu QZ; Zheng ZY; Wang ZH; Chen ZL; Zhong JY; Tang XW; Yang J; Sun CJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026414. PubMed ID: 14995573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.