These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 29453513)
1. Simultaneous cell disruption and lipid extraction of wet aurantiochytrium sp. KRS101 using a high shear mixer. Kwak M; Kang SG; Hong WK; Han JI; Chang YK Bioprocess Biosyst Eng; 2018 May; 41(5):671-678. PubMed ID: 29453513 [TBL] [Abstract][Full Text] [Related]
2. Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica. Chen L; Li R; Ren X; Liu T Bioresour Technol; 2016 Aug; 214():138-143. PubMed ID: 27132220 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass. Ansari FA; Gupta SK; Shriwastav A; Guldhe A; Rawat I; Bux F Environ Sci Pollut Res Int; 2017 Jun; 24(18):15299-15307. PubMed ID: 28502047 [TBL] [Abstract][Full Text] [Related]
4. Effects of molten-salt/ionic-liquid mixture on extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101. Choi SA; Jung JY; Kim K; Kwon JH; Lee JS; Kim SW; Park JY; Yang JW Bioprocess Biosyst Eng; 2014 Nov; 37(11):2199-204. PubMed ID: 24817262 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production. Hidalgo P; Ciudad G; Navia R Bioresour Technol; 2016 Feb; 201():360-4. PubMed ID: 26639615 [TBL] [Abstract][Full Text] [Related]
6. Subcritical n-hexane/isopropanol extraction of lipid from wet microalgal pastes of Scenedesmus obliquus. Bian X; Jin W; Gu Q; Zhou X; Xi Y; Tu R; Han SF; Xie GJ; Gao SH; Wang Q World J Microbiol Biotechnol; 2018 Feb; 34(3):39. PubMed ID: 29460187 [TBL] [Abstract][Full Text] [Related]
7. Improving the lipid recovery from wet oleaginous microorganisms using different pretreatment techniques. Howlader MS; Rai N; Todd French W Bioresour Technol; 2018 Nov; 267():743-755. PubMed ID: 30064900 [TBL] [Abstract][Full Text] [Related]
8. Lipase-catalyzed in-situ biosynthesis of glycerol-free biodiesel from heterotrophic microalgae, Aurantiochytrium sp. KRS101 biomass. Kim KH; Lee OK; Kim CH; Seo JW; Oh BR; Lee EY Bioresour Technol; 2016 Jul; 211():472-7. PubMed ID: 27035480 [TBL] [Abstract][Full Text] [Related]
9. Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification. Navarro López E; Robles Medina A; González Moreno PA; Esteban Cerdán L; Molina Grima E Bioresour Technol; 2016 Sep; 216():904-13. PubMed ID: 27323242 [TBL] [Abstract][Full Text] [Related]
10. Acid-catalyzed hot-water extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101. Choi SA; Jung JY; Kim K; Lee JS; Kwon JH; Kim SW; Yang JW; Park JY Bioresour Technol; 2014 Jun; 161():469-72. PubMed ID: 24755396 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous cell disruption and lipid extraction in a microalgal biomass using a nonpolar tertiary amine. Huang WC; Kim JD Bioresour Technol; 2017 May; 232():142-145. PubMed ID: 28219051 [TBL] [Abstract][Full Text] [Related]
12. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Moradi-Kheibari N; Ahmadzadeh H; Hosseini M Bioprocess Biosyst Eng; 2017 Sep; 40(9):1363-1373. PubMed ID: 28593457 [TBL] [Abstract][Full Text] [Related]
13. Energy requirements for wet solvent extraction of lipids from microalgal biomass. Martin GJ Bioresour Technol; 2016 Apr; 205():40-7. PubMed ID: 26802186 [TBL] [Abstract][Full Text] [Related]
14. Lipid extraction from wet Nannochloropsis biomass via enzyme-assisted three phase partitioning. Qiu C; He Y; Huang Z; Li S; Huang J; Wang M; Chen B Bioresour Technol; 2019 Jul; 284():381-390. PubMed ID: 30959375 [TBL] [Abstract][Full Text] [Related]
15. Low solvent, low temperature method for extracting biodiesel lipids from concentrated microalgal biomass. Olmstead IL; Kentish SE; Scales PJ; Martin GJ Bioresour Technol; 2013 Nov; 148():615-9. PubMed ID: 24080444 [TBL] [Abstract][Full Text] [Related]
17. Interplay between interfacial behaviour, cell structure and shear enables biphasic lipid extraction from whole diatom cells (Navicula sp.). Yatipanthalawa B; Li W; Hill DRA; Trifunovic Z; Ashokkumar M; Scales PJ; Martin GJO J Colloid Interface Sci; 2021 May; 589():65-76. PubMed ID: 33450461 [TBL] [Abstract][Full Text] [Related]
18. Biodiesel from mixed culture algae via a wet lipid extraction procedure. Sathish A; Sims RC Bioresour Technol; 2012 Aug; 118():643-7. PubMed ID: 22721684 [TBL] [Abstract][Full Text] [Related]
19. Lipid Extraction from Liu S; Abu Hajar HA; Riefler G; Stuart BJ Biomed Res Int; 2018; 2018():2720763. PubMed ID: 30627545 [TBL] [Abstract][Full Text] [Related]
20. Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Hernández D; Solana M; Riaño B; García-González MC; Bertucco A Bioresour Technol; 2014 Oct; 170():370-378. PubMed ID: 25151474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]