These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 29453529)

  • 21. Physicochemical properties of nanomaterials: implication in associated toxic manifestations.
    Gatoo MA; Naseem S; Arfat MY; Dar AM; Qasim K; Zubair S
    Biomed Res Int; 2014; 2014():498420. PubMed ID: 25165707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine.
    Zhang Y; Petibone D; Xu Y; Mahmood M; Karmakar A; Casciano D; Ali S; Biris AS
    Drug Metab Rev; 2014 May; 46(2):232-46. PubMed ID: 24506522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanotoxicity assessment in plants: an updated overview.
    Zafar H; Javed R; Zia M
    Environ Sci Pollut Res Int; 2023 Sep; 30(41):93323-93344. PubMed ID: 37544947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanotoxicology and Nanosafety: Safety-By-Design and Testing at a Glance.
    Zielińska A; Costa B; Ferreira MV; Miguéis D; Louros JMS; Durazzo A; Lucarini M; Eder P; Chaud MV; Morsink M; Willemen N; Severino P; Santini A; Souto EB
    Int J Environ Res Public Health; 2020 Jun; 17(13):. PubMed ID: 32605255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advancing risk assessment of engineered nanomaterials: application of computational approaches.
    Gajewicz A; Rasulev B; Dinadayalane TC; Urbaszek P; Puzyn T; Leszczynska D; Leszczynski J
    Adv Drug Deliv Rev; 2012 Dec; 64(15):1663-93. PubMed ID: 22664229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Therapeutic nanostructures and nanotoxicity.
    Sarma A; Bania R; Devi JR; Deka S
    J Appl Toxicol; 2021 Oct; 41(10):1494-1517. PubMed ID: 33641187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms.
    Huang YW; Cambre M; Lee HJ
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29236059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application.
    Syama S; Mohanan PV
    Int J Biol Macromol; 2016 May; 86():546-55. PubMed ID: 26851208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanotoxicology: advances and pitfalls in research methodology.
    Azhdarzadeh M; Saei AA; Sharifi S; Hajipour MJ; Alkilany AM; Sharifzadeh M; Ramazani F; Laurent S; Mashaghi A; Mahmoudi M
    Nanomedicine (Lond); 2015; 10(18):2931-52. PubMed ID: 26370561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro-in vivo gap.
    Joris F; Manshian BB; Peynshaert K; De Smedt SC; Braeckmans K; Soenen SJ
    Chem Soc Rev; 2013 Nov; 42(21):8339-59. PubMed ID: 23877583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoparticles in Daily Life: Applications, Toxicity and Regulations.
    Gupta R; Xie H
    J Environ Pathol Toxicol Oncol; 2018; 37(3):209-230. PubMed ID: 30317972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticles: a review of particle toxicology following inhalation exposure.
    Bakand S; Hayes A; Dechsakulthorn F
    Inhal Toxicol; 2012; 24(2):125-35. PubMed ID: 22260506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The toxicity, transport and uptake of nanoparticles in the in vitro BeWo b30 placental cell barrier model used within NanoTEST.
    Correia Carreira S; Walker L; Paul K; Saunders M
    Nanotoxicology; 2015 May; 9 Suppl 1():66-78. PubMed ID: 23927440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism of nanoparticle toxicity to cyanobacteria.
    Kumar M; Sabu S; Sangela V; Meena M; Rajput VD; Minkina T; Vinayak V; Harish
    Arch Microbiol; 2022 Dec; 205(1):30. PubMed ID: 36525087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoengineered silica: Properties, applications and toxicity.
    Mebert AM; Baglole CJ; Desimone MF; Maysinger D
    Food Chem Toxicol; 2017 Nov; 109(Pt 1):753-770. PubMed ID: 28578101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drosophotoxicology: An Emerging Research Area for Assessing Nanoparticles Interaction with Living Organisms.
    Chifiriuc MC; Ratiu AC; Popa M; Ecovoiu AA
    Int J Mol Sci; 2016 Feb; 17(2):36. PubMed ID: 26907252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches.
    Matranga V; Corsi I
    Mar Environ Res; 2012 May; 76():32-40. PubMed ID: 22391237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: a review of the zebrafish nanotoxicology model.
    Bohnsack JP; Assemi S; Miller JD; Furgeson DY
    Methods Mol Biol; 2012; 926():261-316. PubMed ID: 22975971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relating nanomaterial properties and microbial toxicity.
    Suresh AK; Pelletier DA; Doktycz MJ
    Nanoscale; 2013 Jan; 5(2):463-74. PubMed ID: 23203029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro evaluation of cellular response induced by manufactured nanoparticles.
    Horie M; Kato H; Fujita K; Endoh S; Iwahashi H
    Chem Res Toxicol; 2012 Mar; 25(3):605-19. PubMed ID: 22136515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.