These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29453534)

  • 1. Nanoparticles-Caused Oxidative Imbalance.
    Zuberek M; Grzelak A
    Adv Exp Med Biol; 2018; 1048():85-98. PubMed ID: 29453534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing Oxidative Cellular Stress Induced by Nanoparticles in the Subcytotoxic Range Using Fluorescence Lifetime Imaging.
    Balke J; Volz P; Neumann F; Brodwolf R; Wolf A; Pischon H; Radbruch M; Mundhenk L; Gruber AD; Ma N; Alexiev U
    Small; 2018 Jun; 14(23):e1800310. PubMed ID: 29726099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function during Nanoparticle-Induced Oxidative Stress.
    Duan J; Kodali VK; Gaffrey MJ; Guo J; Chu RK; Camp DG; Smith RD; Thrall BD; Qian WJ
    ACS Nano; 2016 Jan; 10(1):524-38. PubMed ID: 26700264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pitfalls of assays devoted to evaluation of oxidative stress induced by inorganic nanoparticles.
    Tournebize J; Sapin-Minet A; Bartosz G; Leroy P; Boudier A
    Talanta; 2013 Nov; 116():753-63. PubMed ID: 24148470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive effect of arsenic and fluoride on cardio-respiratory disorders in male rats: possible role of reactive oxygen species.
    Flora SJ; Pachauri V; Mittal M; Kumar D
    Biometals; 2011 Aug; 24(4):615-28. PubMed ID: 21243404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.
    Valko M; Jomova K; Rhodes CJ; Kuča K; Musílek K
    Arch Toxicol; 2016 Jan; 90(1):1-37. PubMed ID: 26343967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species: the root cause of nanoparticle-induced toxicity in
    Mishra M; Panda M
    Free Radic Res; 2021 Jun; 55(6):671-687. PubMed ID: 33877010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imbalance between oxidative and antioxidative systems: toward an understanding of visible light-induced titanium dioxide nanoparticles toxicity.
    Zou XY; Xu B; Yu CP; Zhang HW
    Chemosphere; 2013 Nov; 93(10):2451-7. PubMed ID: 24080005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress, redox regulation and diseases of cellular differentiation.
    Ye ZW; Zhang J; Townsend DM; Tew KD
    Biochim Biophys Acta; 2015 Aug; 1850(8):1607-21. PubMed ID: 25445706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting reactive oxygen species in primary hepatocytes treated with nanoparticles.
    Zolnik B; Potter TM; Stern ST
    Methods Mol Biol; 2011; 697():173-9. PubMed ID: 21116966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis.
    Cheng X; Ku CH; Siow RC
    Free Radic Biol Med; 2013 Sep; 64():4-11. PubMed ID: 23880293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Insight into the Role of Reactive Oxygen Species (ROS) in Cellular Signal-Transduction Processes.
    Russell EG; Cotter TG
    Int Rev Cell Mol Biol; 2015; 319():221-54. PubMed ID: 26404470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish.
    Zhao X; Wang S; Wu Y; You H; Lv L
    Aquat Toxicol; 2013 Jul; 136-137():49-59. PubMed ID: 23643724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative Signaling Response to Cadmium Exposure.
    Nemmiche S
    Toxicol Sci; 2017 Mar; 156(1):4-10. PubMed ID: 27803385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox environment, free radical, and oxidative DNA damage.
    Storr SJ; Woolston CM; Zhang Y; Martin SG
    Antioxid Redox Signal; 2013 Jun; 18(18):2399-408. PubMed ID: 23249296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiovascular toxicity of different sizes amorphous silica nanoparticles in rats after intratracheal instillation.
    Du Z; Zhao D; Jing L; Cui G; Jin M; Li Y; Liu X; Liu Y; Du H; Guo C; Zhou X; Sun Z
    Cardiovasc Toxicol; 2013 Sep; 13(3):194-207. PubMed ID: 23322373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells.
    Passagne I; Morille M; Rousset M; Pujalté I; L'azou B
    Toxicology; 2012 Sep; 299(2-3):112-24. PubMed ID: 22627296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2).
    Sharma V; Anderson D; Dhawan A
    Apoptosis; 2012 Aug; 17(8):852-70. PubMed ID: 22395444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallic nanoparticles exhibit paradoxical effects on oxidative stress and pro-inflammatory response in endothelial cells in vitro.
    Peters K; Unger RE; Gatti AM; Sabbioni E; Tsaryk R; Kirkpatrick CJ
    Int J Immunopathol Pharmacol; 2007; 20(4):685-95. PubMed ID: 18179741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.