These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29453717)

  • 41. Practical modeling approaches for geological storage of carbon dioxide.
    Celia MA; Nordbotten JM
    Ground Water; 2009; 47(5):627-38. PubMed ID: 19563425
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessing the environmental consequences of CO2 leakage from geological CCS: generating evidence to support environmental risk assessment.
    Widdicombe S; Blackford JC; Spicer JI
    Mar Pollut Bull; 2013 Aug; 73(2):399-401. PubMed ID: 23809332
    [No Abstract]   [Full Text] [Related]  

  • 43. Leakage of CO
    Gupta PK; Yadav B
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):12995-13018. PubMed ID: 32128734
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly efficient colorimetric CO
    Ko K; Lee JY; Chung H
    Sci Total Environ; 2020 Aug; 729():138786. PubMed ID: 32380324
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers.
    Little MG; Jackson RB
    Environ Sci Technol; 2010 Dec; 44(23):9225-32. PubMed ID: 20977267
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Storage of Carbon Dioxide in Saline Aquifers: Physicochemical Processes, Key Constraints, and Scale-Up Potential.
    Ringrose PS; Furre AK; Gilfillan SMV; Krevor S; Landrø M; Leslie R; Meckel T; Nazarian B; Zahid A
    Annu Rev Chem Biomol Eng; 2021 Jun; 12():471-494. PubMed ID: 33872518
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simulation of CO2-water-rock interactions on geologic CO2 sequestration under geological conditions of China.
    Wang T; Wang H; Zhang F; Xu T
    Mar Pollut Bull; 2013 Nov; 76(1-2):307-14. PubMed ID: 24035426
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid microbial methanogenesis during CO
    Tyne RL; Barry PH; Lawson M; Byrne DJ; Warr O; Xie H; Hillegonds DJ; Formolo M; Summers ZM; Skinner B; Eiler JM; Ballentine CJ
    Nature; 2021 Dec; 600(7890):670-674. PubMed ID: 34937895
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Trace metal source terms in carbon sequestration environments.
    Karamalidis AK; Torres SG; Hakala JA; Shao H; Cantrell KJ; Carroll S
    Environ Sci Technol; 2013 Jan; 47(1):322-9. PubMed ID: 23215015
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quality degradation of alfalfa caused by CO
    Zhang X; Ma X; Song H
    Ecotoxicol Environ Saf; 2022 Nov; 246():114147. PubMed ID: 36209525
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Potential acidification impacts on zooplankton in CCS leakage scenarios.
    Halsband C; Kurihara H
    Mar Pollut Bull; 2013 Aug; 73(2):495-503. PubMed ID: 23632089
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Environmental concern-based site screening of carbon dioxide geological storage in China.
    Cai B; Li Q; Liu G; Liu L; Jin T; Shi H
    Sci Rep; 2017 Aug; 7(1):7598. PubMed ID: 28790358
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inherent Tracers for Carbon Capture and Storage in Sedimentary Formations: Composition and Applications.
    Flude S; Johnson G; Gilfillan SM; Haszeldine RS
    Environ Sci Technol; 2016 Aug; 50(15):7939-55. PubMed ID: 27379462
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Employment impact assessment of carbon capture and storage (CCS) in China's power sector based on input-output model.
    Jiang Y; Lei Y; Yan X; Yang Y
    Environ Sci Pollut Res Int; 2019 May; 26(15):15665-15676. PubMed ID: 30949943
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deciding between carbon trading and carbon capture and sequestration: an optimisation-based case study for methanol synthesis from syngas.
    Üçtuğ FG; Ağralı S; Arıkan Y; Avcıoğlu E
    J Environ Manage; 2014 Jan; 132():1-8. PubMed ID: 24246850
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CO2/Brine transport into shallow aquifers along fault zones.
    Keating EH; Newell DL; Viswanathan H; Carey JW; Zyvoloski G; Pawar R
    Environ Sci Technol; 2013 Jan; 47(1):290-7. PubMed ID: 22799449
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantifying the benefit of wellbore leakage potential estimates for prioritizing long-term MVA well sampling at a CO2 storage site.
    Azzolina NA; Small MJ; Nakles DV; Glazewski KA; Peck WD; Gorecki CD; Bromhal GS; Dilmore RM
    Environ Sci Technol; 2015 Jan; 49(2):1215-24. PubMed ID: 25551254
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Probabilistic design of a near-surface CO2 leak detection system.
    Yang YM; Small MJ; Ogretim EO; Gray DD; Bromhal GS; Strazisar BR; Wells AW
    Environ Sci Technol; 2011 Aug; 45(15):6380-7. PubMed ID: 21732603
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The United States Department of Energy's Regional Carbon Sequestration Partnerships program: a collaborative approach to carbon management.
    Litynski JT; Klara SM; McIlvried HG; Srivastava RD
    Environ Int; 2006 Jan; 32(1):128-44. PubMed ID: 16054694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An Enhanced Carbon Capture and Storage Process (e-CCS) Applied to Shallow Reservoirs Using Nanofluids Based on Nitrogen-Rich Carbon Nanospheres.
    Rodriguez Acevedo E; Cortés FB; Franco CA; Carrasco-Marín F; Pérez-Cadenas AF; Fierro V; Celzard A; Schaefer S; Cardona Molina A
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31261692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.