These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29454111)

  • 1. Combining Rosetta with molecular dynamics (MD): A benchmark of the MD-based ensemble protein design.
    Ludwiczak J; Jarmula A; Dunin-Horkawicz S
    J Struct Biol; 2018 Jul; 203(1):54-61. PubMed ID: 29454111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Molecular Dynamics Simulations as an Aid in the Prediction of Domain Swapping of Computationally Designed Protein Variants.
    Mou Y; Huang PS; Thomas LM; Mayo SL
    J Mol Biol; 2015 Aug; 427(16):2697-706. PubMed ID: 26101839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rosetta:MSF: a modular framework for multi-state computational protein design.
    Löffler P; Schmitz S; Hupfeld E; Sterner R; Merkl R
    PLoS Comput Biol; 2017 Jun; 13(6):e1005600. PubMed ID: 28604768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing protein conformational sampling and structural stability via de novo design and molecular dynamics simulations.
    Cunha KC; Rusu VH; Viana IF; Marques ET; Dhalia R; Lins RD
    Biopolymers; 2015 Jun; 103(6):351-61. PubMed ID: 25677872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the accuracy of protein stability predictions with multistate design using a variety of backbone ensembles.
    Davey JA; Chica RA
    Proteins; 2014 May; 82(5):771-84. PubMed ID: 24174277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring Intrinsic Disorder and Tracking Conformational Transitions Using Rosetta ResidueDisorder.
    Seffernick JT; Ren H; Kim SS; Lindert S
    J Phys Chem B; 2019 Aug; 123(33):7103-7112. PubMed ID: 31411026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.
    Smith CA; Kortemme T
    PLoS One; 2011; 6(7):e20451. PubMed ID: 21789164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Rosetta flexible-backbone computational protein design methods on binding interactions.
    Loshbaugh AL; Kortemme T
    Proteins; 2020 Jan; 88(1):206-226. PubMed ID: 31344278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Evolution-Based Approach to De Novo Protein Design.
    Brender JR; Shultis D; Khattak NA; Zhang Y
    Methods Mol Biol; 2017; 1529():243-264. PubMed ID: 27914055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multistate Computational Protein Design with Backbone Ensembles.
    Davey JA; Chica RA
    Methods Mol Biol; 2017; 1529():161-179. PubMed ID: 27914050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RosettaBackrub--a web server for flexible backbone protein structure modeling and design.
    Lauck F; Smith CA; Friedland GF; Humphris EL; Kortemme T
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W569-75. PubMed ID: 20462859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thoroughly sampling sequence space: large-scale protein design of structural ensembles.
    Larson SM; England JL; Desjarlais JR; Pande VS
    Protein Sci; 2002 Dec; 11(12):2804-13. PubMed ID: 12441379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Protein Design Under a Given Backbone Structure with the ABACUS Statistical Energy Function.
    Xiong P; Chen Q; Liu H
    Methods Mol Biol; 2017; 1529():217-226. PubMed ID: 27914053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations.
    Olson MA; Chaudhury S; Lee MS
    J Comput Chem; 2011 Nov; 32(14):3014-22. PubMed ID: 21793008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational design of a leucine-rich repeat protein with a predefined geometry.
    Rämisch S; Weininger U; Martinsson J; Akke M; André I
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17875-80. PubMed ID: 25427795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Rosetta-based protein design protocol converging to natural sequences.
    Sormani G; Harteveld Z; Rosset S; Correia B; Laio A
    J Chem Phys; 2021 Feb; 154(7):074114. PubMed ID: 33607903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AbDesign: An algorithm for combinatorial backbone design guided by natural conformations and sequences.
    Lapidoth GD; Baran D; Pszolla GM; Norn C; Alon A; Tyka MD; Fleishman SJ
    Proteins; 2015 Aug; 83(8):1385-406. PubMed ID: 25670500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-protein structure prediction by scoring molecular dynamics trajectories of putative poses.
    Sarti E; Gladich I; Zamuner S; Correia BE; Laio A
    Proteins; 2016 Sep; 84(9):1312-20. PubMed ID: 27253756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.