These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29454111)

  • 21. Modeling backbone flexibility to achieve sequence diversity: the design of novel alpha-helical ligands for Bcl-xL.
    Fu X; Apgar JR; Keating AE
    J Mol Biol; 2007 Aug; 371(4):1099-117. PubMed ID: 17597151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational Design of Ligand Binding Proteins.
    Tinberg CE; Khare SD
    Methods Mol Biol; 2017; 1529():363-373. PubMed ID: 27914062
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RosettaDesign server for protein design.
    Liu Y; Kuhlman B
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W235-8. PubMed ID: 16845000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A structural homology approach for computational protein design with flexible backbone.
    Simoncini D; Zhang KYJ; Schiex T; Barbe S
    Bioinformatics; 2019 Jul; 35(14):2418-2426. PubMed ID: 30496341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast gap-free enumeration of conformations and sequences for protein design.
    Roberts KE; Gainza P; Hallen MA; Donald BR
    Proteins; 2015 Oct; 83(10):1859-1877. PubMed ID: 26235965
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integration of Molecular Dynamics Based Predictions into the Optimization of De Novo Protein Designs: Limitations and Benefits.
    Carvalho HF; Barbosa AJ; Roque AC; Iranzo O; Branco RJ
    Methods Mol Biol; 2017; 1529():181-201. PubMed ID: 27914051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iterative Molecular Dynamics-Rosetta Membrane Protein Structure Refinement Guided by Cryo-EM Densities.
    Leelananda SP; Lindert S
    J Chem Theory Comput; 2017 Oct; 13(10):5131-5145. PubMed ID: 28949136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights from molecular dynamics simulations for computational protein design.
    Childers MC; Daggett V
    Mol Syst Des Eng; 2017 Feb; 2(1):9-33. PubMed ID: 28239489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational protein design for given backbone: recent progresses in general method-related aspects.
    Liu H; Chen Q
    Curr Opin Struct Biol; 2016 Aug; 39():89-95. PubMed ID: 27348345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A suite of de novo c-type cytochromes for functional oxidoreductase engineering.
    Watkins DW; Armstrong CT; Beesley JL; Marsh JE; Jenkins JMX; Sessions RB; Mann S; Ross Anderson JL
    Biochim Biophys Acta; 2016 May; 1857(5):493-502. PubMed ID: 26556173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EasyAmber: A comprehensive toolbox to automate the molecular dynamics simulation of proteins.
    Suplatov D; Sharapova Y; Švedas V
    J Bioinform Comput Biol; 2020 Dec; 18(6):2040011. PubMed ID: 32833550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Practically useful: what the Rosetta protein modeling suite can do for you.
    Kaufmann KW; Lemmon GH; Deluca SL; Sheehan JH; Meiler J
    Biochemistry; 2010 Apr; 49(14):2987-98. PubMed ID: 20235548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Can molecular dynamics simulations help in discriminating correct from erroneous protein 3D models?
    Taly JF; Marin A; Gibrat JF
    BMC Bioinformatics; 2008 Jan; 9():6. PubMed ID: 18179702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fast and Flexible Protein Design Using Deep Graph Neural Networks.
    Strokach A; Becerra D; Corbi-Verge C; Perez-Riba A; Kim PM
    Cell Syst; 2020 Oct; 11(4):402-411.e4. PubMed ID: 32971019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rosetta:MSF:NN: Boosting performance of multi-state computational protein design with a neural network.
    Nazet J; Lang E; Merkl R
    PLoS One; 2021; 16(8):e0256691. PubMed ID: 34437621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data.
    Ekimoto T; Ikeguchi M
    Adv Exp Med Biol; 2018; 1105():237-258. PubMed ID: 30617833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rational design of hyper-glycosylated interferon beta analogs: a computational strategy for glycoengineering.
    Samoudi M; Tabandeh F; Minuchehr Z; Ahangari Cohan R; Nouri Inanlou D; Khodabandeh M; Sabery Anvar M
    J Mol Graph Model; 2015 Mar; 56():31-42. PubMed ID: 25544388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved cryoEM-Guided Iterative Molecular Dynamics--Rosetta Protein Structure Refinement Protocol for High Precision Protein Structure Prediction.
    Lindert S; McCammon JA
    J Chem Theory Comput; 2015 Mar; 11(3):1337-46. PubMed ID: 25883538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein design for diversity of sequences and conformations using dead-end elimination.
    Hanf KJ
    Methods Mol Biol; 2012; 899():127-44. PubMed ID: 22735950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.