These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29454111)

  • 61. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Frontiers in molecular dynamics simulations of DNA.
    Pérez A; Luque FJ; Orozco M
    Acc Chem Res; 2012 Feb; 45(2):196-205. PubMed ID: 21830782
    [TBL] [Abstract][Full Text] [Related]  

  • 63. SimFold energy function for de novo protein structure prediction: consensus with Rosetta.
    Fujitsuka Y; Chikenji G; Takada S
    Proteins; 2006 Feb; 62(2):381-98. PubMed ID: 16294329
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Protein WISDOM: a workbench for in silico de novo design of biomolecules.
    Smadbeck J; Peterson MB; Khoury GA; Taylor MS; Floudas CA
    J Vis Exp; 2013 Jul; (77):. PubMed ID: 23912941
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Designing protein structures and complexes with the molecular modeling program Rosetta.
    Kuhlman B
    J Biol Chem; 2019 Dec; 294(50):19436-19443. PubMed ID: 31699898
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Molecular dynamics simulations suggest stabilizing mutations in a de novo designed α/β protein.
    Gill M; McCully ME
    Protein Eng Des Sel; 2019 Dec; 32(7):317-329. PubMed ID: 32086513
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Parallel Computational Protein Design.
    Zhou Y; Donald BR; Zeng J
    Methods Mol Biol; 2017; 1529():265-277. PubMed ID: 27914056
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Can computationally designed protein sequences improve secondary structure prediction?
    Bondugula R; Wallqvist A; Lee MS
    Protein Eng Des Sel; 2011 May; 24(5):455-61. PubMed ID: 21282334
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rosetta comparative modeling for library design: Engineering alternative inducer specificity in a transcription factor.
    Jha RK; Chakraborti S; Kern TL; Fox DT; Strauss CE
    Proteins; 2015 Jul; 83(7):1327-40. PubMed ID: 25974100
    [TBL] [Abstract][Full Text] [Related]  

  • 70. De novo protein design. II. Plasticity in sequence space.
    Koehl P; Levitt M
    J Mol Biol; 1999 Nov; 293(5):1183-93. PubMed ID: 10547294
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Predicting evolutionary site variability from structure in viral proteins: buriedness, packing, flexibility, and design.
    Shahmoradi A; Sydykova DK; Spielman SJ; Jackson EL; Dawson ET; Meyer AG; Wilke CO
    J Mol Evol; 2014 Oct; 79(3-4):130-42. PubMed ID: 25217382
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Positive multistate protein design.
    Vucinic J; Simoncini D; Ruffini M; Barbe S; Schiex T
    Bioinformatics; 2020 Jan; 36(1):122-130. PubMed ID: 31199465
    [TBL] [Abstract][Full Text] [Related]  

  • 73. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure.
    Offredi F; Dubail F; Kischel P; Sarinski K; Stern AS; Van de Weerdt C; Hoch JC; Prosperi C; François JM; Mayo SL; Martial JA
    J Mol Biol; 2003 Jan; 325(1):163-74. PubMed ID: 12473459
    [TBL] [Abstract][Full Text] [Related]  

  • 74. De Novo Protein Design Using the Blueprint Builder in Rosetta.
    An L; Lee GR
    Curr Protoc Protein Sci; 2020 Dec; 102(1):e116. PubMed ID: 33320432
    [TBL] [Abstract][Full Text] [Related]  

  • 75. LassoHTP: A High-Throughput Computational Tool for Lasso Peptide Structure Construction and Modeling.
    Juarez RJ; Jiang Y; Tremblay M; Shao Q; Link AJ; Yang ZJ
    J Chem Inf Model; 2023 Jan; 63(2):522-530. PubMed ID: 36594886
    [TBL] [Abstract][Full Text] [Related]  

  • 76. EvoDesign: De novo protein design based on structural and evolutionary profiles.
    Mitra P; Shultis D; Zhang Y
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W273-80. PubMed ID: 23671331
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Adding diverse noncanonical backbones to rosetta: enabling peptidomimetic design.
    Drew K; Renfrew PD; Craven TW; Butterfoss GL; Chou FC; Lyskov S; Bullock BN; Watkins A; Labonte JW; Pacella M; Kilambi KP; Leaver-Fay A; Kuhlman B; Gray JJ; Bradley P; Kirshenbaum K; Arora PS; Das R; Bonneau R
    PLoS One; 2013; 8(7):e67051. PubMed ID: 23869206
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dynamics, a Powerful Component of Current and Future in Silico Approaches for Protein Design and Engineering.
    Surpeta B; Sequeiros-Borja CE; Brezovsky J
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32295283
    [TBL] [Abstract][Full Text] [Related]  

  • 79. RosettaRemodel: a generalized framework for flexible backbone protein design.
    Huang PS; Ban YE; Richter F; Andre I; Vernon R; Schief WR; Baker D
    PLoS One; 2011; 6(8):e24109. PubMed ID: 21909381
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Review: protein design--where we were, where we are, where we're going.
    Pokala N; Handel TM
    J Struct Biol; 2001; 134(2-3):269-81. PubMed ID: 11551185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.