BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29454112)

  • 1. Comparative proteomic analysis of the maize responses to early leaf senescence induced by preventing pollination.
    Wu L; Wang S; Tian L; Wu L; Li M; Zhang J; Li P; Zhang W; Chen Y
    J Proteomics; 2018 Apr; 177():75-87. PubMed ID: 29454112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.
    Wu L; Li M; Tian L; Wang S; Wu L; Ku L; Zhang J; Song X; Liu H; Chen Y
    PLoS One; 2017; 12(10):e0185838. PubMed ID: 28973044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and proteome studies of maize (Zea mays L.) in response to leaf removal under high plant density.
    Wei S; Wang X; Jiang D; Dong S
    BMC Plant Biol; 2018 Dec; 18(1):378. PubMed ID: 30594144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize.
    Sekhon RS; Childs KL; Santoro N; Foster CE; Buell CR; de Leon N; Kaeppler SM
    Plant Physiol; 2012 Aug; 159(4):1730-44. PubMed ID: 22732243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deep into the leaf senescence proteome of Glycine max.
    Gupta R; Lee SJ; Min CW; Kim SW; Park KH; Bae DW; Lee BW; Agrawal GK; Rakwal R; Kim ST
    J Proteomics; 2016 Oct; 148():65-74. PubMed ID: 27474340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting the Regulatory Network of Leaf Premature Senescence in Maize (
    Chai M; Guo Z; Shi X; Li Y; Tang J; Zhang Z
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31752425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transcription factor ZmNAC126 accelerates leaf senescence downstream of the ethylene signalling pathway in maize.
    Yang Z; Wang C; Qiu K; Chen H; Li Z; Li X; Song J; Wang X; Gao J; Kuai B; Zhou X
    Plant Cell Environ; 2020 Sep; 43(9):2287-2300. PubMed ID: 32430911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance.
    Chen F; Fang P; Peng Y; Zeng W; Zhao X; Ding Y; Zhuang Z; Gao Q; Ren B
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of nitrogen in leaf senescence of summer maize and analysis of underlying mechanisms using comparative proteomics.
    Wei S; Wang X; Zhang J; Liu P; Zhao B; Li G; Dong S
    Plant Sci; 2015 Apr; 233():72-81. PubMed ID: 25711815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings.
    Wang X; Shan X; Wu Y; Su S; Li S; Liu H; Han J; Xue C; Yuan Y
    J Proteomics; 2016 Sep; 146():14-24. PubMed ID: 27321579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Pollination on Cd Phytoextraction From Soil by Maize (Zea mays L.).
    Xu W; Lu G; Wang R; Guo C; Liao C; Yi X; Dang Z
    Int J Phytoremediation; 2015; 17(10):945-50. PubMed ID: 25581531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional analyses of natural leaf senescence in maize.
    Zhang WY; Xu YC; Li WL; Yang L; Yue X; Zhang XS; Zhao XY
    PLoS One; 2014; 9(12):e115617. PubMed ID: 25532107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. microRNA-dependent gene regulatory networks in maize leaf senescence.
    Wu X; Ding D; Shi C; Xue Y; Zhang Z; Tang G; Tang J
    BMC Plant Biol; 2016 Mar; 16():73. PubMed ID: 27000050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the gene of a maize leaf senescence mutant and understanding the senescence pathways by expression analysis.
    Gao Y; Shi X; Chang Y; Li Y; Xiong X; Liu H; Li M; Li W; Zhang X; Fu Z; Xue Y; Tang J
    Plant Cell Rep; 2023 Oct; 42(10):1651-1663. PubMed ID: 37498331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apoplastic infusion of sucrose into stem internodes during female flowering does not increase grain yield in maize plants grown under nitrogen-limiting conditions.
    Peng Y; Li C; Fritschi FB
    Physiol Plant; 2013 Aug; 148(4):470-80. PubMed ID: 23061679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in properties and proteomes of the midribs contribute to the size of the leaf angle in two near-isogenic maize lines.
    Wang N; Cao D; Gong F; Ku L; Chen Y; Wang W
    J Proteomics; 2015 Oct; 128():113-22. PubMed ID: 26244907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long photoperiod affects the maize transition from vegetative to reproductive stages: a proteomic comparison between photoperiod-sensitive inbred line and its recurrent parent.
    Tian L; Wang S; Song X; Zhang J; Liu P; Chen Z; Chen Y; Wu L
    Amino Acids; 2018 Jan; 50(1):149-161. PubMed ID: 29030729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and comparative proteomic analysis provides new insights into the effects of shade stress in maize (Zea mays L.).
    Gao J; Liu Z; Zhao B; Liu P; Zhang JW
    BMC Plant Biol; 2020 Feb; 20(1):60. PubMed ID: 32024458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of transcriptomic and proteomic analyses reveals several levels of metabolic regulation in the excess starch and early senescent leaf mutant lses1 in rice.
    Chen Z; Wang Y; Huang R; Zhang Z; Huang J; Yu F; Lin Y; Guo Y; Liang K; Zhou Y; Chen F
    BMC Plant Biol; 2022 Mar; 22(1):137. PubMed ID: 35321646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of tillage at pre-planting of winter wheat and summer maize on leaf senescence of summer maize].
    Li X; Zhang JW; Ren BZ; Fan X; Dong ST; Liu P; Zhao B
    Ying Yong Sheng Tai Xue Bao; 2015 May; 26(5):1397-403. PubMed ID: 26571657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.