BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 29454114)

  • 1. Mitochondria: Targeting mitochondrial reactive oxygen species with mitochondriotropic polyphenolic-based antioxidants.
    Teixeira J; Deus CM; Borges F; Oliveira PJ
    Int J Biochem Cell Biol; 2018 Apr; 97():98-103. PubMed ID: 29454114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria-targeted Antioxidants as a Prospective Therapeutic Strategy for Multiple Sclerosis.
    Fetisova E; Chernyak B; Korshunova G; Muntyan M; Skulachev V
    Curr Med Chem; 2017; 24(19):2086-2114. PubMed ID: 28302008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondria dysfunction induced by decyl-TPP mitochondriotropic antioxidant based on caffeic acid AntiOxCIN
    Amorim R; Magalhães CC; Benfeito S; Cagide F; Tavares LC; Santos K; Sardão VA; Datta S; Cortopassi GA; Baldeiras I; Jones JG; Borges F; Oliveira PJ; Teixeira J
    Biochem Pharmacol; 2024 Jan; 219():115953. PubMed ID: 38036191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure.
    Naoi M; Wu Y; Shamoto-Nagai M; Maruyama W
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31108962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria-targeted redox probes as tools in the study of oxidative damage and ageing.
    James AM; Cochemé HM; Murphy MP
    Mech Ageing Dev; 2005 Sep; 126(9):982-6. PubMed ID: 15923020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting mitochondria.
    Hoye AT; Davoren JE; Wipf P; Fink MP; Kagan VE
    Acc Chem Res; 2008 Jan; 41(1):87-97. PubMed ID: 18193822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria-targeted antioxidant peptides.
    Rocha M; Hernandez-Mijares A; Garcia-Malpartida K; Bañuls C; Bellod L; Victor VM
    Curr Pharm Des; 2010; 16(28):3124-31. PubMed ID: 20687871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening of dietary antioxidants against mitochondria-mediated oxidative stress by visualization of intracellular redox state.
    Maharjan S; Sakai Y; Hoseki J
    Biosci Biotechnol Biochem; 2016; 80(4):726-34. PubMed ID: 26967637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triphenylphosphonium (TPP)-Based Antioxidants: A New Perspective on Antioxidant Design.
    Wang JY; Li JQ; Xiao YM; Fu B; Qin ZH
    ChemMedChem; 2020 Mar; 15(5):404-410. PubMed ID: 32020724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted-mitochondria antioxidants therapeutic implications in inflammatory bowel disease.
    Matondo A; Kim SS
    J Drug Target; 2018 Jan; 26(1):1-8. PubMed ID: 28581825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting antioxidants to mitochondria by conjugation to lipophilic cations.
    Murphy MP; Smith RA
    Annu Rev Pharmacol Toxicol; 2007; 47():629-56. PubMed ID: 17014364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactions.
    Kagan VE; Wipf P; Stoyanovsky D; Greenberger JS; Borisenko G; Belikova NA; Yanamala N; Samhan Arias AK; Tungekar MA; Jiang J; Tyurina YY; Ji J; Klein-Seetharaman J; Pitt BR; Shvedova AA; Bayir H
    Adv Drug Deliv Rev; 2009 Nov; 61(14):1375-85. PubMed ID: 19716396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions.
    Sandoval-Acuña C; Ferreira J; Speisky H
    Arch Biochem Biophys; 2014 Oct; 559():75-90. PubMed ID: 24875147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy.
    Ni R; Cao T; Xiong S; Ma J; Fan GC; Lacefield JC; Lu Y; Le Tissier S; Peng T
    Free Radic Biol Med; 2016 Jan; 90():12-23. PubMed ID: 26577173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the efficacy of plant polyphenols.
    Biasutto L; Mattarei A; Sassi N; Azzolini M; Romio M; Paradisi C; Zoratti M
    Anticancer Agents Med Chem; 2014; 14(10):1332-42. PubMed ID: 24975033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyphenols prevent ageing-related impairment in skeletal muscle mitochondrial function through decreased reactive oxygen species production.
    Charles AL; Meyer A; Dal-Ros S; Auger C; Keller N; Ramamoorthy TG; Zoll J; Metzger D; Schini-Kerth V; Geny B
    Exp Physiol; 2013 Feb; 98(2):536-45. PubMed ID: 22903980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial reactive oxygen species: the effects of mitochondrial ascorbic acid vs untargeted and mitochondria-targeted antioxidants.
    Fiorani M; Guidarelli A; Cantoni O
    Int J Radiat Biol; 2021; 97(8):1055-1062. PubMed ID: 31976796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting antioxidants to mitochondria: a new therapeutic direction.
    Sheu SS; Nauduri D; Anders MW
    Biochim Biophys Acta; 2006 Feb; 1762(2):256-65. PubMed ID: 16352423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.