These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29454542)

  • 1. Classifying running speed conditions using a single wearable sensor: Optimal segmentation and feature extraction methods.
    Benson LC; Clermont CA; Osis ST; Kobsar D; Ferber R
    J Biomech; 2018 Apr; 71():94-99. PubMed ID: 29454542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature selection for elderly faller classification based on wearable sensors.
    Howcroft J; Kofman J; Lemaire ED
    J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning algorithms can classify outdoor terrain types during running using accelerometry data.
    Dixon PC; Schütte KH; Vanwanseele B; Jacobs JV; Dennerlein JT; Schiffman JM; Fournier PA; Hu B
    Gait Posture; 2019 Oct; 74():176-181. PubMed ID: 31539798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification accuracy of a single tri-axial accelerometer for training background and experience level in runners.
    Kobsar D; Osis ST; Hettinga BA; Ferber R
    J Biomech; 2014 Jul; 47(10):2508-11. PubMed ID: 24837221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Running patterns for male and female competitive and recreational runners based on accelerometer data.
    Clermont CA; Benson LC; Osis ST; Kobsar D; Ferber R
    J Sports Sci; 2019 Jan; 37(2):204-211. PubMed ID: 29920155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy cost of running instability evaluated with wearable trunk accelerometry.
    Schütte KH; Sackey S; Venter R; Vanwanseele B
    J Appl Physiol (1985); 2018 Feb; 124(2):462-472. PubMed ID: 28751372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methodology and validation for identifying gait type using machine learning on IMU data.
    Mahoney JM; Rhudy MB
    J Med Eng Technol; 2019 Jan; 43(1):25-32. PubMed ID: 31037995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "You can tell by the way I use my walk." Predicting the presence of cognitive load with gait measurements.
    Dasgupta P; VanSwearingen J; Sejdic E
    Biomed Eng Online; 2018 Sep; 17(1):122. PubMed ID: 30208897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Considerations for Collecting Biomechanical Data Using Wearable Sensors: The Effect of Different Running Environments.
    Benson LC; Clermont CA; Ferber R
    Front Bioeng Biotechnol; 2020; 8():86. PubMed ID: 32117951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject-specific and group-based running pattern classification using a single wearable sensor.
    Ahamed NU; Kobsar D; Benson LC; Clermont CA; Osis ST; Ferber R
    J Biomech; 2019 Feb; 84():227-233. PubMed ID: 30670327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data.
    Li K; Habre R; Deng H; Urman R; Morrison J; Gilliland FD; Ambite JL; Stripelis D; Chiang YY; Lin Y; Bui AA; King C; Hosseini A; Vliet EV; Sarrafzadeh M; Eckel SP
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11201. PubMed ID: 30730297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments.
    Farrahi V; Muhammad U; Rostami M; Oussalah M
    Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Faller Classification in Older Adults Using Wearable Sensors Based on Turn and Straight-Walking Accelerometer-Based Features.
    Drover D; Howcroft J; Kofman J; Lemaire ED
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using wearable sensors to classify subject-specific running biomechanical gait patterns based on changes in environmental weather conditions.
    Ahamed NU; Kobsar D; Benson L; Clermont C; Kohrs R; Osis ST; Ferber R
    PLoS One; 2018; 13(9):e0203839. PubMed ID: 30226903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of IMU Design on IMU-Derived Stride Metrics for Running.
    Potter MV; Ojeda LV; Perkins NC; Cain SM
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31181688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-individual differences in stride frequencies during running obtained from wearable data.
    Van Oeveren BT; De Ruiter CJ; Hoozemans MJM; Beek PJ; Van Dieën JH
    J Sports Sci; 2019 Sep; 37(17):1996-2006. PubMed ID: 31079578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of footstrike pattern using accelerometry and machine learning.
    Mahoney JM; Rhudy MB; Outerleys J; Davis IS; Altman-Singles AR
    J Biomech; 2024 Sep; 174():112255. PubMed ID: 39159584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of running velocity on resultant tibial acceleration in runners.
    Sheerin KR; Besier TF; Reid D
    Sports Biomech; 2020 Dec; 19(6):750-760. PubMed ID: 30537920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New considerations for collecting biomechanical data using wearable sensors: Number of level runs to define a stable running pattern with a single IMU.
    Benson LC; Ahamed NU; Kobsar D; Ferber R
    J Biomech; 2019 Mar; 85():187-192. PubMed ID: 30670328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine learning approach to detect changes in gait parameters following a fatiguing occupational task.
    Baghdadi A; Megahed FM; Esfahani ET; Cavuoto LA
    Ergonomics; 2018 Aug; 61(8):1116-1129. PubMed ID: 29452575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.