BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29454816)

  • 1. Optimization of granular waste production based on mechanical properties.
    Ghasemi A; Chayjan RA; Najafabadi HJ
    Waste Manag; 2018 May; 75():82-93. PubMed ID: 29454816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill.
    Tumuluru JS; Conner CC; Hoover AN
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27340875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of fuel pellets via hydrothermal carbonization of food waste using molasses as a binder.
    Zhai Y; Wang T; Zhu Y; Peng C; Wang B; Li X; Li C; Zeng G
    Waste Manag; 2018 Jul; 77():185-194. PubMed ID: 30008408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.
    Gug J; Cacciola D; Sobkowicz MJ
    Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possibilities for preservation of coarse particles in pelleting process to improve feed quality characteristics.
    Vukmirović D; Fišteš A; Lević J; Čolović R; Rakić D; Brlek T; Banjac V
    J Anim Physiol Anim Nutr (Berl); 2017 Oct; 101(5):857-867. PubMed ID: 26898511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the potential of pelletized biomass from different municipal solid wastes for use as solid fuel.
    Wang T; Li Y; Zhang J; Zhao J; Liu Y; Sun L; Liu B; Mao H; Lin Y; Li W; Ju M; Zhu F
    Waste Manag; 2018 Apr; 74():260-266. PubMed ID: 29224974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting mechanical properties of biomass pellet from compost.
    Zafari A; Kianmehr MH
    Environ Technol; 2014; 35(1-4):478-86. PubMed ID: 24600888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets.
    Ishii K; Furuichi T
    Waste Manag; 2014 Dec; 34(12):2621-6. PubMed ID: 25212174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical durability and combustion characteristics of pellets from biomass blends.
    Gil MV; Oulego P; Casal MD; Pevida C; Pis JJ; Rubiera F
    Bioresour Technol; 2010 Nov; 101(22):8859-67. PubMed ID: 20605093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the dried properties of Ganoderma lucidum produced by the convective dryer and infrared dryer.
    Naseri M; Movagharnejad K; Nanvakenari S
    Sci Rep; 2023 Aug; 13(1):12636. PubMed ID: 37537244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards Large Particle Size in Compound Feed: Using Expander Conditioning Prior to Pelleting Improves Pellet Quality and Growth Performance of Broilers.
    Ebbing MA; Yacoubi N; Naranjo V; Sitzmann W; Schedle K; Gierus M
    Animals (Basel); 2022 Oct; 12(19):. PubMed ID: 36230448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of non-contact laser profilometry to the determination of permanent structural change induced by compaction of pellets II. Pellets dried by different techniques.
    Bashaiwoldu AB; Podczeck F; Newton JM
    Eur J Pharm Sci; 2004 May; 22(1):55-61. PubMed ID: 15113583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical properties of peanut hull pellets.
    Fasina OO
    Bioresour Technol; 2008 Mar; 99(5):1259-66. PubMed ID: 17475480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-vitro and in-vivo evaluation of enteric-coated starch-based pellets prepared via extrusion/spheronisation.
    Dukić-Ott A; De Beer T; Remon JP; Baeyens W; Foreman P; Vervaet C
    Eur J Pharm Biopharm; 2008 Sep; 70(1):302-12. PubMed ID: 18579353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets.
    Hu Q; Yang H; Yao D; Zhu D; Wang X; Shao J; Chen H
    Bioresour Technol; 2016 Jan; 200():521-7. PubMed ID: 26524250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of densification process in organic waste management.
    Zafari A; Kianmehr MH
    Waste Manag Res; 2013 Jul; 31(7):684-91. PubMed ID: 23609176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apparatus and method for investigation of energy consumption of microwave assisted drying systems.
    Göllei A; Vass A; Magyar A; Pallai E
    Rev Sci Instrum; 2009 Oct; 80(10):104706. PubMed ID: 19895084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research on the drying kinetics of household food waste for the development and optimization of domestic waste drying technique.
    Sotiropoulos A; Malamis D; Michailidis P; Krokida M; Loizidou M
    Environ Technol; 2016; 37(8):929-39. PubMed ID: 26507489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of nectarine drying under near infrared - Vacuum conditions.
    Alaei B; Chayjan RA
    Acta Sci Pol Technol Aliment; 2015; 14(1):15-27. PubMed ID: 28068016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of drying kinetics and quality parameters of grape pomace dried with a heat pump dryer.
    Taşeri L; Aktaş M; Şevik S; Gülcü M; Uysal Seçkin G; Aktekeli B
    Food Chem; 2018 Sep; 260():152-159. PubMed ID: 29699656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.