These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 29454817)

  • 1. Investigating the feasibility of a reuse scenario for textile fibres recovered from end-of-life tyres.
    Landi D; Gigli S; Germani M; Marconi M
    Waste Manag; 2018 May; 75():187-204. PubMed ID: 29454817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment and disposal of tyres: Two EU approaches. A review.
    Torretta V; Rada EC; Ragazzi M; Trulli E; Istrate IA; Cioca LI
    Waste Manag; 2015 Nov; 45():152-60. PubMed ID: 25943287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of steel fibres recovered from waste tyres as reinforcement in concrete: pull-out behaviour, compressive and flexural strength.
    Aiello MA; Leuzzi F; Centonze G; Maffezzoli A
    Waste Manag; 2009 Jun; 29(6):1960-70. PubMed ID: 19167204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life cycle assessment applications to reuse, recycling and circular practices for textiles: A review.
    Abagnato S; Rigamonti L; Grosso M
    Waste Manag; 2024 Jun; 182():74-90. PubMed ID: 38643525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dealing with emerging waste streams: used tyre assessment in Thailand using material flow analysis.
    Jacob P; Kashyap P; Suparat T; Visvanathan C
    Waste Manag Res; 2014 Sep; 32(9):918-26. PubMed ID: 25106533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular life cycle assessment of municipal solid waste management.
    Haupt M; Kägi T; Hellweg S
    Waste Manag; 2018 Sep; 79():815-827. PubMed ID: 29861114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.
    Jeswani HK; Azapagic A
    Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental impacts and benefits of state-of-the-art technologies for E-waste management.
    Ikhlayel M
    Waste Manag; 2017 Oct; 68():458-474. PubMed ID: 28662843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reuse of end-of-life personal protective equipment in hot asphalt mixtures: an environmental evaluation.
    Landi D; Marconi M; Bocci E; Gianvincenzi M; Spreafico C
    Procedia CIRP; 2023; 116():420-425. PubMed ID: 37091128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan.
    Asari M; Fukui K; Sakai S
    Sci Total Environ; 2008 Apr; 393(1):1-10. PubMed ID: 18237763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Closed cycle construction: an integrated process for the separation and reuse of C&D waste.
    Mulder E; de Jong TP; Feenstra L
    Waste Manag; 2007; 27(10):1408-15. PubMed ID: 17532617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of good practices, barriers and drivers for ELTs pyrolysis industrial application.
    Zabaniotou A; Antoniou N; Bruton G
    Waste Manag; 2014 Nov; 34(11):2335-46. PubMed ID: 25148927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout.
    Colazo AB; Sánchez A; Font X; Colón J
    Waste Manag; 2015 Sep; 43():84-97. PubMed ID: 26123979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park.
    Parkes O; Lettieri P; Bogle ID
    Waste Manag; 2015 Jun; 40():157-66. PubMed ID: 25837786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling waste vehicle tyres into crumb rubber and the transition to renewable energy sources: A comprehensive life cycle assessment.
    Tushar Q; Santos J; Zhang G; Bhuiyan MA; Giustozzi F
    J Environ Manage; 2022 Dec; 323():116289. PubMed ID: 36261991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobilisation of textile waste to recover high added value products and energy for the transition to circular economy.
    Papamichael I; Voukkali I; Economou F; Loizia P; Demetriou G; Esposito M; Naddeo V; Liscio MC; Sospiro P; Zorpas AA
    Environ Res; 2024 Feb; 242():117716. PubMed ID: 37995999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waste hierarchy index for circular economy in waste management.
    Pires A; Martinho G
    Waste Manag; 2019 Jul; 95():298-305. PubMed ID: 31351615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Projecting the environmental profile of Singapore's landfill activities: Comparisons of present and future scenarios based on LCA.
    Khoo HH; Tan LL; Tan RB
    Waste Manag; 2012 May; 32(5):890-900. PubMed ID: 22257698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A management system for end-of-life tyres: a Portuguese case study.
    Ferrão P; Ribeiro P; Silva P
    Waste Manag; 2008; 28(3):604-14. PubMed ID: 17482804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.