These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 29454818)

  • 1. Comprehensive characterization of printed circuit boards of various end-of-life electrical and electronic equipment for beneficiation investigation.
    Anshu Priya ; Hait S
    Waste Manag; 2018 May; 75():103-123. PubMed ID: 29454818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of end-of-life mobile phone printed circuit boards for its elemental composition and beneficiation analysis.
    Annamalai M; Gurumurthy K
    J Air Waste Manag Assoc; 2021 Mar; 71(3):315-327. PubMed ID: 32841086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Qualitative and quantitative metals liberation assessment for characterization of various waste printed circuit boards for recycling.
    Priya A; Hait S
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):27445-27456. PubMed ID: 28980132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining the evolution of metals utilized in printed circuit boards.
    Adie GU; Sun L; Zeng X; Zheng L; Osibanjo O; Li J
    Environ Technol; 2017 Jul; 38(13-14):1696-1701. PubMed ID: 27673726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waste electrical and electronic equipments as urban mines in Burkina Faso: Characterization and release of metal particles.
    Konaté FO; Ancia P; Soma F; Bougouma M; Buess-Herman C; Yonli AH; Vitry V
    Waste Manag; 2022 Feb; 139():17-24. PubMed ID: 34923185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentration of precious metals during their recovery from electronic waste.
    Cayumil R; Khanna R; Rajarao R; Mukherjee PS; Sahajwalla V
    Waste Manag; 2016 Nov; 57():121-130. PubMed ID: 26712661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive elemental analysis of consumer electronic devices: Rare earth, precious, and critical elements.
    Buechler DT; Zyaykina NN; Spencer CA; Lawson E; Ploss NM; Hua I
    Waste Manag; 2020 Feb; 103():67-75. PubMed ID: 31865037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling-oriented methodology to sample and characterize the metal composition of waste Printed Circuit Boards.
    Hubau A; Chagnes A; Minier M; Touzé S; Chapron S; Guezennec AG
    Waste Manag; 2019 May; 91():62-71. PubMed ID: 31203943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of gold and silver in assorted mobile phone printed circuit boards (PCBs): Original article.
    Vats MC; Singh SK
    Waste Manag; 2015 Nov; 45():280-8. PubMed ID: 26112260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging.
    Palmieri R; Bonifazi G; Serranti S
    Waste Manag; 2014 Nov; 34(11):2120-30. PubMed ID: 24997795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentration of precious metals from waste printed circuit boards using supergravity separation.
    Meng L; Guo L; Zhong Y; Wang Z; Chen K; Guo Z
    Waste Manag; 2018 Dec; 82():147-155. PubMed ID: 30509576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.
    Xiu FR; Qi Y; Zhang FS
    Waste Manag; 2015 Jul; 41():134-41. PubMed ID: 25802060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of precious metals positioning in waste printed circuit boards and the economic benefits of recycling.
    Huang T; Zhu J; Huang X; Ruan J; Xu Z
    Waste Manag; 2022 Feb; 139():105-115. PubMed ID: 34959086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast copper extraction from printed circuit boards using supercritical carbon dioxide.
    Calgaro CO; Schlemmer DF; da Silva MD; Maziero EV; Tanabe EH; Bertuol DA
    Waste Manag; 2015 Nov; 45():289-97. PubMed ID: 26022338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
    Kaya M
    Waste Manag; 2016 Nov; 57():64-90. PubMed ID: 27543174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones.
    Shah MB; Tipre DR; Dave SR
    Waste Manag Res; 2014 Nov; 32(11):1134-41. PubMed ID: 25278513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental and economic performance analysis of recycling waste printed circuit boards using life cycle assessment.
    Pokhrel P; Lin SL; Tsai CT
    J Environ Manage; 2020 Dec; 276():111276. PubMed ID: 32871467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precious and critical metals from wasted LED lamps: characterization and evaluation.
    Cenci MP; Dal Berto FC; Castillo BW; Veit HM
    Environ Technol; 2022 May; 43(12):1870-1881. PubMed ID: 33241733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Status of electronic waste recycling techniques: a review.
    Abdelbasir SM; Hassan SSM; Kamel AH; El-Nasr RS
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):16533-16547. PubMed ID: 29737485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of gold and silver leaching from printed circuit board of cellphones.
    Petter PM; Veit HM; Bernardes AM
    Waste Manag; 2014 Feb; 34(2):475-82. PubMed ID: 24332399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.