BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29454888)

  • 1. Bioequivalence decision for nanoparticular iron complex drugs for parenteral administration based on their disposition.
    Schnorr J; Fütterer S; Spicher K; Catarinolo M; Schlösser C; Enzmann H; Langguth P
    Regul Toxicol Pharmacol; 2018 Apr; 94():293-298. PubMed ID: 29454888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrosative Stress and Apoptosis by Intravenous Ferumoxytol, Iron Isomaltoside 1000, Iron Dextran, Iron Sucrose, and Ferric Carboxymaltose in a Nonclinical Model.
    Toblli JE; Cao G; Giani JF; Dominici FP; Angerosa M
    Drug Res (Stuttg); 2015 Jul; 65(7):354-60. PubMed ID: 25050519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the extent of oxidative stress induced by intravenous ferumoxytol, ferric carboxymaltose, iron sucrose and iron dextran in a nonclinical model.
    Toblli JE; Cao G; Oliveri L; Angerosa M
    Arzneimittelforschung; 2011; 61(7):399-410. PubMed ID: 21899208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative toxicity and cell-tissue distribution study on nanoparticular iron complexes using avian embryos and HepG2-cells.
    Roth S; Langguth P; Spicher K; Enzmann H
    Transl Res; 2008 Jan; 151(1):36-44. PubMed ID: 18061126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative effect of several intravenous iron complexes in the rat.
    Bailie GR; Schuler C; Leggett RE; Li H; Li HD; Patadia H; Levin R
    Biometals; 2013 Jun; 26(3):473-8. PubMed ID: 23681275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complexity of intravenous iron nanoparticle formulations: implications for bioequivalence evaluation.
    Pai AB
    Ann N Y Acad Sci; 2017 Nov; 1407(1):17-25. PubMed ID: 29027212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intravenous iron treatment in pregnancy: comparison of high-dose ferric carboxymaltose vs. iron sucrose.
    Christoph P; Schuller C; Studer H; Irion O; De Tejada BM; Surbek D
    J Perinat Med; 2012 May; 40(5):469-74. PubMed ID: 22945271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in tissue distribution of iron from various clinically used intravenous iron complexes in fetal avian heart and liver.
    Spicher K; Brendler-Schwaab S; Schlösser C; Catarinolo M; Fütterer S; Langguth P; Enzmann H
    Regul Toxicol Pharmacol; 2015 Oct; 73(1):65-72. PubMed ID: 26111606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferrous iron content of intravenous iron formulations.
    Gupta A; Pratt RD; Crumbliss AL
    Biometals; 2016 Jun; 29(3):411-5. PubMed ID: 26956439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Importance of the different i.v. iron generations for everyday medical practice].
    Biggar P; Hahn KM
    MMW Fortschr Med; 2013 Mar; 155 Suppl 1():18-24. PubMed ID: 23678667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodistribution and predictive hepatic gene expression of intravenous iron sucrose.
    Elford P; Bouchard J; Jaillet L; Pearson N; Rogue A; Sabadie C; Forster R
    J Pharmacol Toxicol Methods; 2013; 68(3):374-83. PubMed ID: 23624021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle iron medicinal products - Requirements for approval of intended copies of non-biological complex drugs (NBCD) and the importance of clinical comparative studies.
    Borchard G; Flühmann B; Mühlebach S
    Regul Toxicol Pharmacol; 2012 Nov; 64(2):324-8. PubMed ID: 22951348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of intravenous iron supplementation in chronic kidney disease: an update.
    Macdougall IC; Geisser P
    Iran J Kidney Dis; 2013 Jan; 7(1):9-22. PubMed ID: 23314137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacokinetics, safety and tolerability of intravenous ferric carboxymaltose: a dose-escalation study in volunteers with mild iron-deficiency anaemia.
    Geisser P; Banké-Bochita J
    Arzneimittelforschung; 2010; 60(6a):362-72. PubMed ID: 20648928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the suitability of a Sprague Dawley rat model to assess intravenous iron preparations.
    Span K; Pieters EHE; Brinks V; Hennink WE; Schellekens H
    J Pharmacol Toxicol Methods; 2018; 91():7-17. PubMed ID: 29278742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron sucrose: assessing the similarity between the originator drug and its intended copies.
    Di Francesco T; Philipp E; Borchard G
    Ann N Y Acad Sci; 2017 Nov; 1407(1):63-74. PubMed ID: 29168243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-molecular weight iron dextran and iron sucrose have similar comparative safety profiles in chronic kidney disease.
    Auerbach M; Al Talib K
    Kidney Int; 2008 Mar; 73(5):528-30. PubMed ID: 18274543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Safety and efficacy of high-dose intravenous iron carboxymaltose vs. iron sucrose for treatment of postpartum anemia.
    Pfenniger A; Schuller C; Christoph P; Surbek D
    J Perinat Med; 2012 Apr; 40(4):397-402. PubMed ID: 22752771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Randomized controlled trial comparing ferric carboxymaltose and iron sucrose for treatment of iron deficiency anemia due to abnormal uterine bleeding.
    Mahey R; Kriplani A; Mogili KD; Bhatla N; Kachhawa G; Saxena R
    Int J Gynaecol Obstet; 2016 Apr; 133(1):43-8. PubMed ID: 26868063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parenteral iron therapy options.
    Silverstein SB; Rodgers GM
    Am J Hematol; 2004 May; 76(1):74-8. PubMed ID: 15114602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.