These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29454889)

  • 21. The ecology, evolution, and biogeography of dioecy in the genus Solanum: with paradigms from the strong dioecy in Solanum polygamum, to the unsuspected and cryptic dioecy in Solanum conocarpum.
    Anderson GJ; Anderson MK; Patel N
    Am J Bot; 2015 Mar; 102(3):471-86. PubMed ID: 25784480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating divergence times and ancestral breeding systems in Ficus and Moraceae.
    Zhang Q; Onstein RE; Little SA; Sauquet H
    Ann Bot; 2019 Jan; 123(1):191-204. PubMed ID: 30202847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary transitions among dioecy, androdioecy and hermaphroditism in limnadiid clam shrimp (Branchiopoda: Spinicaudata).
    Weeks SC; Chapman EG; Rogers DC; Senyo DM; Hoeh WR
    J Evol Biol; 2009 Sep; 22(9):1781-99. PubMed ID: 19702888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phylogenetic position of Guihaiothamnus (Rubiaceae): its evolutionary and ecological implications.
    Xie P; Tu T; Razafimandimbison SG; Zhu C; Zhang D
    Mol Phylogenet Evol; 2014 Sep; 78():375-85. PubMed ID: 24931731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distyly and pollen dimorphism in Damnacanthus (Rubiaceae).
    Naiki A; Nagamasu H
    J Plant Res; 2003 Apr; 116(2):105-13. PubMed ID: 12736782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ radiation explains the frequency of dioecious palms on islands.
    Cássia-Silva C; Freitas CG; Jardim L; Bacon CD; Collevatti RG
    Ann Bot; 2021 Jul; 128(2):205-215. PubMed ID: 33949659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Standard sister clade comparison fails when testing derived character States.
    Käfer J; Mousset S
    Syst Biol; 2014 Jul; 63(4):601-9. PubMed ID: 24671619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of diversification in causing the correlates of dioecy.
    Vamosi JC; Vamosi SM
    Evolution; 2004 Apr; 58(4):723-31. PubMed ID: 15154548
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Macroevolutionary synthesis of flowering plant sexual systems.
    Goldberg EE; Otto SP; Vamosi JC; Mayrose I; Sabath N; Ming R; Ashman TL
    Evolution; 2017 Apr; 71(4):898-912. PubMed ID: 28085192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary history of the buildup and breakdown of the heterostylous syndrome in Plumbaginaceae.
    Costa J; Torices R; Barrett SCH
    New Phytol; 2019 Nov; 224(3):1278-1289. PubMed ID: 30825331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyploidy and sexual system in angiosperms: Is there an association?
    Glick L; Sabath N; Ashman TL; Goldberg E; Mayrose I
    Am J Bot; 2016 Jul; 103(7):1223-35. PubMed ID: 27352832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phylogenetic Analysis of Dioecy in Monocotyledons.
    Weiblen GD; Oyama RK; Donoghue MJ
    Am Nat; 2000 Jan; 155(1):46-58. PubMed ID: 10657176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distyly and variation in heteromorphic incompatibility in Gaertnera vaginata (Rubiaceae) endemic to La Reunion Island.
    Pailler T; Thompson J
    Am J Bot; 1997 Mar; 84(3):315. PubMed ID: 21708585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Breakdown of distyly in a tetraploid variety of Ophiorrhiza japonica (Rubiaceae) and its phylogenetic analysis.
    Nakamura K; Denda T; Kameshima O; Yokota M
    J Plant Res; 2007 Jul; 120(4):501-9. PubMed ID: 17530166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patterns of molecular evolution in dioecious and non-dioecious Silene.
    Käfer J; Talianová M; Bigot T; Michu E; Guéguen L; Widmer A; Žlůvová J; Glémin S; Marais GA
    J Evol Biol; 2013 Feb; 26(2):335-46. PubMed ID: 23206219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms.
    Beaulieu JM; O'Meara BC; Donoghue MJ
    Syst Biol; 2013 Sep; 62(5):725-37. PubMed ID: 23676760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phylogenetic relationships and character evolution analysis of Saxifragales using a supermatrix approach.
    Soltis DE; Mort ME; Latvis M; Mavrodiev EV; O'Meara BC; Soltis PS; Burleigh JG; Rubio de Casas R
    Am J Bot; 2013 May; 100(5):916-29. PubMed ID: 23629845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of a climbing habit promotes diversification in flowering plants.
    Gianoli E
    Proc Biol Sci; 2004 Oct; 271(1552):2011-5. PubMed ID: 15451690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Woodiness within the Spermacoceae-Knoxieae alliance (Rubiaceae): retention of the basal woody condition in Rubiaceae or recent innovation?
    Lens F; Groeninckx I; Smets E; Dessein S
    Ann Bot; 2009 May; 103(7):1049-64. PubMed ID: 19279041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards a global perspective for Salvia L.: Phylogeny, diversification and floral evolution.
    Moein F; Jamzad Z; Rahiminejad M; Landis JB; Mirtadzadini M; Soltis DE; Soltis PS
    J Evol Biol; 2023 Mar; 36(3):589-604. PubMed ID: 36759951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.