BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29454905)

  • 1. Relationships between surface coverage ratio and powder mechanics of binary adhesive mixtures for dry powder inhalers.
    Rudén J; Frenning G; Bramer T; Thalberg K; Alderborn G
    Int J Pharm; 2018 Apr; 541(1-2):143-156. PubMed ID: 29454905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking carrier morphology to the powder mechanics of adhesive mixtures for dry powder inhalers via a blend-state model.
    Rudén J; Frenning G; Bramer T; Thalberg K; An J; Alderborn G
    Int J Pharm; 2019 Apr; 561():148-160. PubMed ID: 30825556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the roles of carrier microstructure in adhesive/carrier-based dry powder inhalation mixtures: Carrier porosity and fine particle content.
    Shalash AO; Molokhia AM; Elsayed MM
    Eur J Pharm Biopharm; 2015 Oct; 96():291-303. PubMed ID: 26275831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Rational Design Space for Optimizing Mixing Conditions for Formation of Adhesive Mixtures for Dry-Powder Inhaler Formulations.
    Sarkar S; Minatovicz B; Thalberg K; Chaudhuri B
    J Pharm Sci; 2017 Jan; 106(1):129-139. PubMed ID: 27546350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the Effect of Fine Lactose Ratio on the Rheological Properties and Aerodynamic Behavior of Dry Powder for Inhalation.
    Sun Y; Qin L; Li J; Su J; Song R; Zhang X; Guan J; Mao S
    AAPS J; 2021 Apr; 23(3):55. PubMed ID: 33856568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dry powder inhalers: mechanistic evaluation of lactose formulations containing salbutamol sulphate.
    Kaialy W; Ticehurst M; Nokhodchi A
    Int J Pharm; 2012 Feb; 423(2):184-94. PubMed ID: 22197772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pressure drop on the in vitro dispersion of adhesive mixtures of different blend states for inhalation.
    Rudén J; Frenning G; Bramer T; Thalberg K; Alderborn G
    Int J Pharm; 2022 Apr; 617():121590. PubMed ID: 35182704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Powder flow analysis: A simple method to indicate the ideal amount of lactose fines in dry powder inhaler formulations.
    Hertel M; Schwarz E; Kobler M; Hauptstein S; Steckel H; Scherließ R
    Int J Pharm; 2018 Jan; 535(1-2):59-67. PubMed ID: 29100914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-lactose binding aspects in adhesive mixtures: controlling performance in dry powder inhaler formulations by altering lactose carrier surfaces.
    Zhou QT; Morton DA
    Adv Drug Deliv Rev; 2012 Mar; 64(3):275-84. PubMed ID: 21782866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the Surface Roughness Length Scales of Lactose Carrier Particles in Dry Powder Inhalers.
    Tan BMJ; Chan LW; Heng PWS
    Mol Pharm; 2018 Apr; 15(4):1635-1642. PubMed ID: 29490144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation into the effect of fine lactose particles on the fluidization behaviour and aerosolization performance of carrier-based dry powder inhaler formulations.
    Kinnunen H; Hebbink G; Peters H; Shur J; Price R
    AAPS PharmSciTech; 2014 Aug; 15(4):898-909. PubMed ID: 24756910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capabilities and limitations of using powder rheology and permeability to predict dry powder inhaler performance.
    Cordts E; Steckel H
    Eur J Pharm Biopharm; 2012 Oct; 82(2):417-23. PubMed ID: 22902789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved aerosolization performance of salbutamol sulfate formulated with lactose crystallized from binary mixtures of ethanol-acetone.
    Kaialy W; Ticehurst MD; Murphy J; Nokhodchi A
    J Pharm Sci; 2011 Jul; 100(7):2665-84. PubMed ID: 21268026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agglomerate behaviour of fluticasone propionate within dry powder inhaler formulations.
    Le VN; Robins E; Flament MP
    Eur J Pharm Biopharm; 2012 Apr; 80(3):596-603. PubMed ID: 22198291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formulating powder-device combinations for salmeterol xinafoate dry powder inhalers.
    Hassoun M; Ho S; Muddle J; Buttini F; Parry M; Hammond M; Forbes B
    Int J Pharm; 2015 Jul; 490(1-2):360-7. PubMed ID: 25987210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low powder mass filling of dry powder inhalation formulations.
    Eskandar F; Lejeune M; Edge S
    Drug Dev Ind Pharm; 2011 Jan; 37(1):24-32. PubMed ID: 20738180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Role of Fine Excipient Materials in Carrier-Based Dry Powder Inhalation Mixtures: Effect on Deagglomeration of Drug Particles During Mixing Revealed.
    Shalash AO; Elsayed MMA
    AAPS PharmSciTech; 2017 Nov; 18(8):2862-2870. PubMed ID: 28421352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spherical agglomerates of lactose as potential carriers for inhalation.
    Zellnitz S; Lamešić D; Stranzinger S; Pinto JT; Planinšek O; Paudel A
    Eur J Pharm Biopharm; 2021 Feb; 159():11-20. PubMed ID: 33358941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Granulated Lactose as a Carrier for Dry Powder Inhaler Formulations 2: Effect of Drugs and Drug Loading.
    Du P; Du J; Smyth HDC
    J Pharm Sci; 2017 Jan; 106(1):366-376. PubMed ID: 27939234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of dry powder inhalation with lactose carrier particles surface-coated using a Wurster fluidized bed.
    Iida K; Todo H; Okamoto H; Danjo K; Leuenberger H
    Chem Pharm Bull (Tokyo); 2005 Apr; 53(4):431-4. PubMed ID: 15802846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.