These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 29454922)
21. Struvite pellet crystallization in a high-strength nitrogen and phosphorus stream. Li Y; Liu M; Yuan Z; Zou J Water Sci Technol; 2013; 68(6):1300-5. PubMed ID: 24056427 [TBL] [Abstract][Full Text] [Related]
22. Electricity production and phosphorous recovery as struvite from synthetic wastewater using magnesium-air fuel cell electrocoagulation. Kim JH; An BM; Lim DH; Park JY Water Res; 2018 Apr; 132():200-210. PubMed ID: 29331908 [TBL] [Abstract][Full Text] [Related]
23. Fractionating various nutrient ions for resource recovery from swine wastewater using simultaneous anionic and cationic selective-electrodialysis. Ye ZL; Ghyselbrecht K; Monballiu A; Pinoy L; Meesschaert B Water Res; 2019 Sep; 160():424-434. PubMed ID: 31163318 [TBL] [Abstract][Full Text] [Related]
24. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor. Rahaman MS; Mavinic DS; Meikleham A; Ellis N Water Res; 2014 Mar; 51():1-10. PubMed ID: 24384559 [TBL] [Abstract][Full Text] [Related]
25. Using mass struvite precipitation to remove recalcitrant nutrients and micropollutants from anaerobic digestion dewatering centrate. Abel-Denee M; Abbott T; Eskicioglu C Water Res; 2018 Apr; 132():292-300. PubMed ID: 29334648 [TBL] [Abstract][Full Text] [Related]
26. Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively. Sniatala B; Kurniawan TA; Sobotka D; Makinia J; Othman MHD Sci Total Environ; 2023 Jan; 856(Pt 2):159283. PubMed ID: 36208738 [TBL] [Abstract][Full Text] [Related]
27. Electrochemically-assisted ammonia recovery from wastewater using a floating electrode. Muster TH; Jermakka J Water Sci Technol; 2017 Apr; 75(7-8):1804-1811. PubMed ID: 28452772 [TBL] [Abstract][Full Text] [Related]
28. Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater: a review. Kumar R; Pal P Environ Sci Pollut Res Int; 2015 Nov; 22(22):17453-64. PubMed ID: 26408116 [TBL] [Abstract][Full Text] [Related]
29. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
30. Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions. Shih YJ; Abarca RRM; de Luna MDG; Huang YH; Lu MC Chemosphere; 2017 Apr; 173():466-473. PubMed ID: 28135681 [TBL] [Abstract][Full Text] [Related]
31. Advancing sustainable wastewater management: A comprehensive review of nutrient recovery products and their applications. Śniatała B; Al-Hazmi HE; Sobotka D; Zhai J; Mąkinia J Sci Total Environ; 2024 Aug; 937():173446. PubMed ID: 38788940 [TBL] [Abstract][Full Text] [Related]
32. Assessment of nutrient fluxes and recovery for a small-scale agricultural waste management system. Orner KD; Camacho-Céspedes F; Cunningham JA; Mihelcic JR J Environ Manage; 2020 Aug; 267():110626. PubMed ID: 32421668 [TBL] [Abstract][Full Text] [Related]
33. Effective removal of ammonia nitrogen from waste seawater using crystal seed enhanced struvite precipitation technology with response surface methodology for process optimization. Song W; Li Z; Liu F; Ding Y; Qi P; You H; Jin C Environ Sci Pollut Res Int; 2018 Jan; 25(1):628-638. PubMed ID: 29052150 [TBL] [Abstract][Full Text] [Related]
34. Determining the feasibility of phosphorus recovery as struvite from filter press centrate in a secondary wastewater treatment plant. Fattah KP; Mavinic DS; Koch FA; Jacob C J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):756-64. PubMed ID: 18444078 [TBL] [Abstract][Full Text] [Related]
35. Waste lime as a potential cation source in the phosphate crystallization process. Ahn YH; Speece RE Environ Technol; 2006 Nov; 27(11):1225-31. PubMed ID: 17203604 [TBL] [Abstract][Full Text] [Related]
36. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization. Zou H; Wang Y Bioresour Technol; 2016 Jul; 211():87-92. PubMed ID: 27003794 [TBL] [Abstract][Full Text] [Related]
37. Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater. Li Y; Shi S; Cao H; Wu X; Zhao Z; Wang L Water Res; 2016 Feb; 89():201-9. PubMed ID: 26674548 [TBL] [Abstract][Full Text] [Related]
38. Nutrient removal from wastewaters using high performance materials. Mackinnon ID; Barr K; Miller E; Hunter S; Pinel T Water Sci Technol; 2003; 47(11):101-7. PubMed ID: 12906277 [TBL] [Abstract][Full Text] [Related]
39. Reactive electrically conducting membranes for phosphorus recovery from livestock wastewater effluents. Kekre KM; Anvari A; Kahn K; Yao Y; Ronen A J Environ Manage; 2021 Mar; 282():111432. PubMed ID: 33386173 [TBL] [Abstract][Full Text] [Related]
40. Effective nutrient recovery from digester centrate assisted by in situ production of acid/base in a novel electrochemical membrane system. Liu F; Moustafa H; Hassouna MSE; He Z Chemosphere; 2022 Nov; 307(Pt 3):135851. PubMed ID: 35961444 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]