These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 29454925)

  • 21. Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid.
    Mohd Omar F; Abdul Aziz H; Stoll S
    Sci Total Environ; 2014 Jan; 468-469():195-201. PubMed ID: 24029691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles.
    Thio BJ; Zhou D; Keller AA
    J Hazard Mater; 2011 May; 189(1-2):556-63. PubMed ID: 21429667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined effects of titanium dioxide and humic acid on the bioaccumulation of cadmium in Zebrafish.
    Hu X; Chen Q; Jiang L; Yu Z; Jiang D; Yin D
    Environ Pollut; 2011 May; 159(5):1151-8. PubMed ID: 21376439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aggregation of titanium dioxide nanoparticles: role of a fulvic acid.
    Domingos RF; Tufenkji N; Wilkinson KI
    Environ Sci Technol; 2009 Mar; 43(5):1282-6. PubMed ID: 19350891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid.
    Dong H; Lo IM
    Water Res; 2013 May; 47(7):2489-96. PubMed ID: 23466217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dispersion state and humic acids concentration-dependent sorption of pyrene to carbon nanotubes.
    Zhang X; Kah M; Jonker MT; Hofmann T
    Environ Sci Technol; 2012 Jul; 46(13):7166-73. PubMed ID: 22656042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dispersion and stability of titanium dioxide nanoparticles in aqueous suspension: effects of ultrasonication and concentration.
    Qi J; Ye YY; Wu JJ; Wang HT; Li FT
    Water Sci Technol; 2013; 67(1):147-51. PubMed ID: 23128632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The limited facilitating effect of dissolved organic matter extracted from organic wastes on the transport of titanium dioxide nanoparticles in acidic saturated porous media.
    Zhang R; Zhang H; Tu C; Luo Y
    Chemosphere; 2019 Dec; 237():124529. PubMed ID: 31404740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and TiO2 nanoparticles.
    Chen W; Qian C; Liu XY; Yu HQ
    Environ Sci Technol; 2014 Oct; 48(19):11119-26. PubMed ID: 25222835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions.
    Hu JD; Zevi Y; Kou XM; Xiao J; Wang XJ; Jin Y
    Sci Total Environ; 2010 Jul; 408(16):3477-89. PubMed ID: 20421125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of humic acid on the stability and bacterial toxicity of zinc oxide nanoparticles in water.
    Akhil K; Chandran P; Sudheer Khan S
    J Photochem Photobiol B; 2015 Dec; 153():289-95. PubMed ID: 26496792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments.
    Wang H; Dong YN; Zhu M; Li X; Keller AA; Wang T; Li F
    Water Res; 2015 Sep; 80():130-8. PubMed ID: 26001279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deprotonation and protonation of humic acids as a strategy for the technological development of pH-responsive nanoparticles with fungicidal potential.
    Motta FL; Melo BA; Santana MH
    N Biotechnol; 2016 Dec; 33(6):773-780. PubMed ID: 27432195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of a typical antibiotic (tetracycline) on the aggregation of TiO
    Qi N; Wang P; Wang C; Ao Y
    J Hazard Mater; 2018 Jan; 341():187-197. PubMed ID: 28780433
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deposition mechanisms of TiO2 nanoparticles in a parallel plate system.
    Chowdhury I; Walker SL
    J Colloid Interface Sci; 2012 Mar; 369(1):16-22. PubMed ID: 22226475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC60).
    Qu X; Alvarez PJ; Li Q
    Environ Sci Technol; 2012 Dec; 46(24):13455-62. PubMed ID: 23157776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aggregation and Colloidal Stability of Commercially Available Al₂O₃ Nanoparticles in Aqueous Environments.
    Mui J; Ngo J; Kim B
    Nanomaterials (Basel); 2016 May; 6(5):. PubMed ID: 28335218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles.
    Li S; Ma H; Wallis LK; Etterson MA; Riley B; Hoff DJ; Diamond SA
    Sci Total Environ; 2016 Jan; 542(Pt A):324-33. PubMed ID: 26519592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of reduced humic acid on the transport of ferrihydrite nanoparticles under anoxic conditions.
    Liao P; Li W; Wang D; Jiang Y; Pan C; Fortner JD; Yuan S
    Water Res; 2017 Feb; 109():347-357. PubMed ID: 27926882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of oxidative stress to TiO
    Song B; Zhou T; Yang W; Liu J; Shao L
    Environ Toxicol Pharmacol; 2016 Dec; 48():130-140. PubMed ID: 27771506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.