BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29454951)

  • 1. The role of sucrose concentration in self-assembly kinetics of high methoxyl pectin.
    Giacomazza D; Bulone D; San Biagio PL; Marino R; Lapasin R
    Int J Biol Macromol; 2018 Jun; 112():1183-1190. PubMed ID: 29454951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complex mechanism of HM pectin self-assembly: A rheological investigation.
    Giacomazza D; Bulone D; San Biagio PL; Lapasin R
    Carbohydr Polym; 2016 Aug; 146():181-6. PubMed ID: 27112864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data concerning the rheological behavior of high methoxyl pectin during gelation process.
    Giacomazza D; Bulone D; San Biagio PL; Marino R; Lapasin R
    Data Brief; 2018 Jun; 18():1628-1631. PubMed ID: 29904665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and thermal behaviour of the structure formation process in HMP/sucrose gelation.
    da Silva JA; Gonçalves MP; Rao MA
    Int J Biol Macromol; 1995 Feb; 17(1):25-32. PubMed ID: 7772559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological behavior of high methoxyl pectin from the pulp of tamarillo fruit (Solanum betaceum).
    do Nascimento GE; Simas-Tosin FF; Iacomini M; Gorin PA; Cordeiro LM
    Carbohydr Polym; 2016 Mar; 139():125-30. PubMed ID: 26794955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure and kinetic rheological behavior of amidated and nonamidated LM pectin gels.
    Löfgren C; Guillotin S; Hermansson AM
    Biomacromolecules; 2006 Jan; 7(1):114-21. PubMed ID: 16398505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of calcium, pH, and blockiness on kinetic rheological behavior and microstructure of HM pectin gels.
    Löfgren C; Guillotin S; Evenbratt H; Schols H; Hermansson AM
    Biomacromolecules; 2005; 6(2):646-52. PubMed ID: 15762625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High methoxyl pectin from the soluble dietary fiber of passion fruit peel forms weak gel without the requirement of sugar addition.
    Abboud KY; Iacomini M; Simas FF; Cordeiro LMC
    Carbohydr Polym; 2020 Oct; 246():116616. PubMed ID: 32747256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of microstructure, viscoelasticity, heterogeneity and ergodicity in pectin-laponite-CTAB-calcium nanocomposite hydrogels.
    Joshi N; Rawat K; Bohidar HB
    Carbohydr Polym; 2016 Jan; 136():242-9. PubMed ID: 26572352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the formulation design and rheological evaluations of pectin-based functional gels.
    Haghighi M; Rezaei K; Labbafi M; Khodaiyan F
    J Food Sci; 2011; 76(1):E15-22. PubMed ID: 21535667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of gelation process investigated by fast field cycling relaxometry and dynamical rheology: the case of aqueous low methoxyl pectin solution.
    Dobies M; Kozak M; Jurga S
    Solid State Nucl Magn Reson; 2004 Jan; 25(1-3):188-93. PubMed ID: 14698409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in macroscopic viscosity do not affect the release of aroma aldehydes from a pectinaceous food model system of low sucrose content.
    Bylaite E; Meyer AS; Adler-Nissen J
    J Agric Food Chem; 2003 Dec; 51(27):8020-6. PubMed ID: 14690390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cacao pod husks as a source of low-methoxyl, highly acetylated pectins able to gel in acidic media.
    Vriesmann LC; de Oliveira Petkowicz CL
    Int J Biol Macromol; 2017 Aug; 101():146-152. PubMed ID: 28322947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-pressure-induced rheological changes of low-methoxyl pectin plus micellar casein mixtures.
    Abbasi S; Dickinson E
    J Agric Food Chem; 2002 Jun; 50(12):3559-65. PubMed ID: 12033829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sucrose and Ca
    Zhao X; Ye F; Wu Z; Zhou Y; Lei L; Zhou S; Zhao G
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132397. PubMed ID: 38821787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of caseinate-covered oil droplets during acidification with high methoxyl pectin.
    Bonnet C; Corredig M; Alexander M
    J Agric Food Chem; 2005 Nov; 53(22):8600-6. PubMed ID: 16248559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The degree of compactness of the incipient High Methoxyl Pectin networks. A rheological insight at the sol-gel transition.
    Ditta LA; Bulone D; Biagio PLS; Marino R; Giacomazza D; Lapasin R
    Int J Biol Macromol; 2020 May; 158():985-993. PubMed ID: 32387608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pectin gelation with chlorhexidine: Physico-chemical studies in dilute solutions.
    Lascol M; Bourgeois S; Guillière F; Hangouët M; Raffin G; Marote P; Lantéri P; Bordes C
    Carbohydr Polym; 2016 Oct; 150():159-65. PubMed ID: 27312625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of chain length and polymer concentration on the gelation of (amidated) low-methoxyl pectin induced by calcium.
    Capel F; Nicolai T; Durand D; Boulenguer P; Langendorff V
    Biomacromolecules; 2005; 6(6):2954-60. PubMed ID: 16283714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of taste masking agents on in situ gelling pectin formulations for oral sustained delivery of paracetamol and ambroxol.
    Miyazaki S; Kubo W; Itoh K; Konno Y; Fujiwara M; Dairaku M; Togashi M; Mikami R; Attwood D
    Int J Pharm; 2005 Jun; 297(1-2):38-49. PubMed ID: 15907595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.