BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 29454962)

  • 21. Activation of Janus kinase/signal transducers and activators of transcription pathway involved in megakaryocyte proliferation induced by vanadium resembles some aspects of essential thrombocythemia.
    Gonzalez-Villalva A; Piñon-Zarate G; Falcon-Rodriguez C; Lopez-Valdez N; Bizarro-Nevares P; Rojas-Lemus M; Rendon-Huerta E; Colin-Barenque L; Fortoul TI
    Toxicol Ind Health; 2016 May; 32(5):908-18. PubMed ID: 24442345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop.
    Rawadi G; Vayssière B; Dunn F; Baron R; Roman-Roman S
    J Bone Miner Res; 2003 Oct; 18(10):1842-53. PubMed ID: 14584895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HBM Mice Have Altered Bone Matrix Composition and Improved Material Toughness.
    Ross RD; Mashiatulla M; Acerbo AS; Almer JD; Miller LM; Johnson ML; Sumner DR
    Calcif Tissue Int; 2016 Oct; 99(4):384-95. PubMed ID: 27230741
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Humanized VB22B minibody for human Mpl stimulates human megakaryopoiesis but does not enhance platelet aggregation.
    Matsuki E; Miyakawa Y; Yamane A; Okamoto S
    Exp Hematol; 2011 Aug; 39(8):829-36. PubMed ID: 21605620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of a novel, small non-peptidyl molecule butyzamide on human thrombopoietin receptor and megakaryopoiesis.
    Nogami W; Yoshida H; Koizumi K; Yamada H; Abe K; Arimura A; Yamane N; Takahashi K; Yamane A; Oda A; Tanaka Y; Takemoto H; Ohnishi Y; Ikeda Y; Miyakawa Y
    Haematologica; 2008 Oct; 93(10):1495-504. PubMed ID: 18728031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Levels of serotonin, sclerostin, bone turnover markers as well as bone density and microarchitecture in patients with high-bone-mass phenotype due to a mutation in Lrp5.
    Frost M; Andersen T; Gossiel F; Hansen S; Bollerslev J; van Hul W; Eastell R; Kassem M; Brixen K
    J Bone Miner Res; 2011 Aug; 26(8):1721-8. PubMed ID: 21351148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gender specific LRP5 influences on trabecular bone structure and strength.
    Dubrow SA; Hruby PM; Akhter MP
    J Musculoskelet Neuronal Interact; 2007; 7(2):166-73. PubMed ID: 17627087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oropharyngeal skeletal disease accompanying high bone mass and novel LRP5 mutation.
    Rickels MR; Zhang X; Mumm S; Whyte MP
    J Bone Miner Res; 2005 May; 20(5):878-85. PubMed ID: 15824861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An RNA-seq protocol to identify mRNA expression changes in mouse diaphyseal bone: applications in mice with bone property altering Lrp5 mutations.
    Ayturk UM; Jacobsen CM; Christodoulou DC; Gorham J; Seidman JG; Seidman CE; Robling AG; Warman ML
    J Bone Miner Res; 2013 Oct; 28(10):2081-93. PubMed ID: 23553928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interference RNA (RNAi)-based silencing of endogenous thrombopoietin receptor (Mpl) in Dami cells resulted in decreased hNUDC-mediated megakaryocyte proliferation and differentiation.
    Pang SF; Li XK; Zhang Q; Yang F; Xu P
    Exp Cell Res; 2009 Dec; 315(20):3563-73. PubMed ID: 19560457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of multiple bone responses to graded strains above functional levels, and to disuse, in mice in vivo show that the human Lrp5 G171V High Bone Mass mutation increases the osteogenic response to loading but that lack of Lrp5 activity reduces it.
    Saxon LK; Jackson BF; Sugiyama T; Lanyon LE; Price JS
    Bone; 2011 Aug; 49(2):184-93. PubMed ID: 21419885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone biomechanical properties in LRP5 mutant mice.
    Akhter MP; Wells DJ; Short SJ; Cullen DM; Johnson ML; Haynatzki GR; Babij P; Allen KM; Yaworsky PJ; Bex F; Recker RR
    Bone; 2004 Jul; 35(1):162-9. PubMed ID: 15207752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of cell differentiation by hNUDC via a Mpl-dependent mechanism in NIH 3T3 cells.
    Zhang YP; Tang YS; Chen XS; Xu P
    Exp Cell Res; 2007 Sep; 313(15):3210-21. PubMed ID: 17658515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Effect of Overexpression of Lrp5 on the Temporomandibular Joint.
    Utreja A; Motevasel H; Bain C; Holland R; Robling A
    Cartilage; 2021 Dec; 13(2_suppl):419S-426S. PubMed ID: 33124433
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanotransduction in bone tissue: The A214V and G171V mutations in Lrp5 enhance load-induced osteogenesis in a surface-selective manner.
    Niziolek PJ; Warman ML; Robling AG
    Bone; 2012 Sep; 51(3):459-65. PubMed ID: 22750014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gain-of-Function Lrp5 Mutation Improves Bone Mass and Strength and Delays Hyperglycemia in a Mouse Model of Insulin-Deficient Diabetes.
    Leanza G; Fontana F; Lee SY; Remedi MS; Schott C; Ferron M; Hamilton-Hall M; Alippe Y; Strollo R; Napoli N; Civitelli R
    J Bone Miner Res; 2021 Jul; 36(7):1403-1415. PubMed ID: 33831261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lrp5 is not required for the proliferative response of osteoblasts to strain but regulates proliferation and apoptosis in a cell autonomous manner.
    Javaheri B; Sunters A; Zaman G; Suswillo RF; Saxon LK; Lanyon LE; Price JS
    PLoS One; 2012; 7(5):e35726. PubMed ID: 22567110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reversing LRP5-dependent osteoporosis and SOST deficiency-induced sclerosing bone disorders by altering WNT signaling activity.
    Chang MK; Kramer I; Keller H; Gooi JH; Collett C; Jenkins D; Ettenberg SA; Cong F; Halleux C; Kneissel M
    J Bone Miner Res; 2014 Jan; 29(1):29-42. PubMed ID: 23901037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High bone mass due to novel LRP5 and AMER1 mutations.
    Costantini A; Kekäläinen P; Mäkitie RE; Mäkitie O
    Eur J Med Genet; 2017 Dec; 60(12):675-679. PubMed ID: 28893644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyclin D3 and megakaryocyte development: exploration of a transgenic phenotype.
    Zimmet JM; Toselli P; Ravid K
    Stem Cells; 1998; 16 Suppl 2():97-106. PubMed ID: 11012182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.