These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29455126)

  • 1. Removal mechanisms of volatile organic compounds (VOCs) from effluent of common effluent treatment plant (CETP).
    Padalkar AV; Kumar R
    Chemosphere; 2018 May; 199():569-584. PubMed ID: 29455126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal mechanisms of VOCs in an activated sludge process.
    Hsieh CC
    J Hazard Mater; 2000 Dec; 79(1-2):173-87. PubMed ID: 11040394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A laboratory batch reactor test for assessing nonspeciated volatile organic compound biodegradation in activated sludge.
    Cano ML; Saterbak A; van Compernolle R; Williams MP; Huot ME; Rhodes IA; Allen CC
    Water Environ Res; 2003; 75(4):342-54. PubMed ID: 12934828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing operating parameters of a honeycomb zeolite rotor concentrator for processing TFT-LCD volatile organic compounds with competitive adsorption characteristics.
    Lin YC; Chang FT
    J Hazard Mater; 2009 May; 164(2-3):517-26. PubMed ID: 18804914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of substrate Henry's constant on biofilter performance.
    Zhu X; Suidan MT; Pruden A; Yang C; Alonso C; Kim BJ; Kim BR
    J Air Waste Manag Assoc; 2004 Apr; 54(4):409-18. PubMed ID: 15115369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption and biodegradation of hydrophobic volatile organic compounds: determination of Henry's constants and biodegradation levels.
    Darracq G; Couvert A; Couriol C; Amrane A; Le Cloirec P
    Water Sci Technol; 2009; 59(7):1315-22. PubMed ID: 19380996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation.
    De Biase C; Carminati A; Oswald SE; Thullner M
    J Contam Hydrol; 2013 Nov; 154():53-69. PubMed ID: 24090736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-oxidation of airborne volatile organic compounds in an activated sludge aeration tank.
    Chou MS; Chang HY
    J Air Waste Manag Assoc; 2005 May; 55(5):604-11. PubMed ID: 15991669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic modeling of biodegradation and volatilization of hazardous aromatic substances in aerobic bioreactor.
    Mozo I; Lesage G; Yin J; Bessiere Y; Barna L; Sperandio M
    Water Res; 2012 Oct; 46(16):5327-42. PubMed ID: 22877879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic liquids storage tanks volatile organic compounds (VOCS) emissions dispersion and risk assessment in developing countries: the case of Dar-es-Salaam City, Tanzania.
    Jackson MM
    Environ Monit Assess; 2006 May; 116(1-3):363-82. PubMed ID: 16779602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VOC removal and deodorization of effluent gases from an industrial plant by photo-oxidation, chemical oxidation, and ozonization.
    Domeño C; Rodríguez-Lafuente A; Martos JM; Bilbao R; Nerín C
    Environ Sci Technol; 2010 Apr; 44(7):2585-91. PubMed ID: 20192167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel membrane bioreactor: Able to cope with fluctuating loads, poorly water soluble VOCs, and biomass accumulation.
    Studer M; Rudolf von Rohr P
    Biotechnol Bioeng; 2008 Jan; 99(1):38-48. PubMed ID: 17570707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fates of chlorinated volatile organic compounds in aerobic biological treatment processes: the effects of aeration and sludge addition.
    Chen WH; Yang WB; Yuan CS; Yang JC; Zhao QL
    Chemosphere; 2014 May; 103():92-8. PubMed ID: 24321332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants.
    Kegge W; Ninkovic V; Glinwood R; Welschen RA; Voesenek LA; Pierik R
    Ann Bot; 2015 May; 115(6):961-70. PubMed ID: 25851141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological treatment of a contaminated gaseous emission from a leather industry in a suspended-growth bioreactor.
    Carvalho MF; Duque AF; Moura SC; Amorim CL; Ferreira Jorge RM; Castro PM
    Chemosphere; 2009 Jan; 74(2):232-8. PubMed ID: 18990430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofiltration of a mixture of volatile organic compounds on granular activated carbon.
    Aizpuru A; Malhautier L; Roux JC; Fanlo JL
    Biotechnol Bioeng; 2003 Aug; 83(4):479-88. PubMed ID: 12800142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stripping of organic compounds from wastewater as an auxiliary fuel of regenerative thermal oxidizer.
    Chang MW; Chern JM
    J Hazard Mater; 2009 Aug; 167(1-3):553-9. PubMed ID: 19195779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal and Longitudinal Characteristics of Volatile Organic Compound Emissions from Aeration Units of Publicly Owned Treatment Works.
    Zhu H; Keener TC; Bishop PL; Orton TL; Wang M; Siddiqui K
    J Air Waste Manag Assoc; 1999 Apr; 49(4):434-443. PubMed ID: 28060651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofiltration of volatile organic compounds.
    Malhautier L; Khammar N; Bayle S; Fanlo JL
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):16-22. PubMed ID: 15803311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds.
    Cheng Y; He H; Yang C; Zeng G; Li X; Chen H; Yu G
    Biotechnol Adv; 2016 Nov; 34(6):1091-1102. PubMed ID: 27374790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.