These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 29455283)

  • 1. Glucose-sensitive nanoassemblies comprising affinity-binding complexes trapped in fuzzy microshells.
    Chinnayelka S; McShane MJ
    J Fluoresc; 2004 Sep; 14(5):585-95. PubMed ID: 15617265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing a nanostructured fluorescence energy transfer sensor for quick detection of extremely small amounts of glucose.
    Zhang J; Wang X; Chen L; Li J; Luzak K
    J Diabetes Sci Technol; 2013 Jan; 7(1):45-52. PubMed ID: 23439159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lifetime-based sensing of the hyaluronidase using fluorescein labeled hyaluronic acid.
    Fudala R; Mummert ME; Gryczynski Z; Rich R; Borejdo J; Gryczynski I
    J Photochem Photobiol B; 2012 Jan; 106(1):69-73. PubMed ID: 22082776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Eu
    Dwivedi A; Srivastava M; Srivastava A; Kumar A; Chaurasia RN; Srivastava SK
    J Photochem Photobiol B; 2023 Dec; 249():112802. PubMed ID: 37918122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance energy transfer nanobiosensors based on affinity binding between apo-enzyme and its substrate.
    Chinnayelka S; McShane MJ
    Biomacromolecules; 2004; 5(5):1657-61. PubMed ID: 15360271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overcoming the aggregation problem: a new type of fluorescent ligand for ConA-based glucose sensing.
    Cummins BM; Li M; Locke AK; Birch DJS; Vigh G; Coté GL
    Biosens Bioelectron; 2015 Jan; 63():53-60. PubMed ID: 25058939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a panel of glucose indicator proteins for continuous glucose monitoring.
    Jin S; Veetil JV; Garrett JR; Ye K
    Biosens Bioelectron; 2011 Apr; 26(8):3427-31. PubMed ID: 21333521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulation of a Concanavalin A/dendrimer glucose sensing assay within microporated poly (ethylene glycol) microspheres.
    Cummin BM; Lim J; Simanek EE; Pishko MV; Coté GL
    Biomed Opt Express; 2011 Apr; 2(5):1243-57. PubMed ID: 21559135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methyl methacrylate-modified polystyrene microspheres: an effective strategy to enhance the fluorescence of Eu-complexes.
    Yuan Y; Wang Y; Awasthi P; Dong W; Chen D; Qiao X; Wang Z; Qian G; Fan X
    Phys Chem Chem Phys; 2024 Jun; 26(25):17622-17630. PubMed ID: 38864339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic/molecular layer deposition of europium-organic thin films on nanoplasmonic structures towards FRET-based applications.
    Ghazy A; Ylönen J; Subramaniyam N; Karppinen M
    Nanoscale; 2023 Oct; 15(38):15865-15870. PubMed ID: 37750381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel immuno-device based on the specific binding of AuNP-supported CTAB with biotinylated antibody of hyaluronic acid toward an early-stage recognition of a biomarker: a bioanalytical assay in real samples using disposal biosensor technology.
    Mobed A; Kohansal F; Dolati S; Hasanzadeh M
    RSC Adv; 2022 Oct; 12(44):28473-28488. PubMed ID: 36320526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A side-chain engineering strategy for constructing fluorescent dyes with direct and ultrafast self-delivery to living cells.
    Guo L; Li C; Shang H; Zhang R; Li X; Lu Q; Cheng X; Liu Z; Sun JZ; Yu X
    Chem Sci; 2019 Dec; 11(3):661-670. PubMed ID: 34123038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QTR-FRET: Efficient background reduction technology in time-resolved förster resonance energy transfer assays.
    Syrjänpää M; Vuorinen E; Kulmala S; Wang Q; Härmä H; Kopra K
    Anal Chim Acta; 2019 Dec; 1092():93-101. PubMed ID: 31708038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism.
    Chen L; Tse WH; Chen Y; McDonald MW; Melling J; Zhang J
    Biosens Bioelectron; 2017 May; 91():393-399. PubMed ID: 28063388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hyaluronic acid fluorescent hydrogel based on fluorescence resonance energy transfer for sensitive detection of hyaluronidase.
    Ge M; Sun J; Chen M; Tian J; Yin H; Yin J
    Anal Bioanal Chem; 2020 Mar; 412(8):1915-1923. PubMed ID: 32030494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of Fluorescence Sensing Mechanism for Cell Functional Analysis].
    Ojida A; Takashima I
    Yakugaku Zasshi; 2016; 136(1):3-7. PubMed ID: 26725660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent Nanobiosensors for Sensing Glucose.
    Chen L; Hwang E; Zhang J
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29734744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilizing hyaluronic acid as a versatile platform for fluorescence resonance energy transfer-based glucose sensing.
    Ge M; Bai P; Chen M; Tian J; Hu J; Zhi X; Yin H; Yin J
    Anal Bioanal Chem; 2018 Mar; 410(9):2413-2421. PubMed ID: 29455283
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.