BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2945594)

  • 1. A study of the mechanism by which inhibitors of the plasmamembrane ATPase enhance uptake of divalent cations in yeast.
    Borst-Pauwels GW; Boxman AW; Theuvenet AP; Peters PH; Dobbelmann J
    Biochim Biophys Acta; 1986 Oct; 861(3):413-9. PubMed ID: 2945594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-or-none interactions of inhibitors of the plasma membrane ATPase with Saccharomyces cerevisiae.
    Borst-Pauwels GW; Theuvenet AP; Stols AL
    Biochim Biophys Acta; 1983 Jul; 732(1):186-92. PubMed ID: 6307362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of phenothiazines on inhibition of plasma membrane ATPase and hyperpolarization of cell membranes in the yeast Saccharomyces cerevisiae.
    Eilam Y
    Biochim Biophys Acta; 1984 Feb; 769(3):601-10. PubMed ID: 6230105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ethidium bromide and DEAE-dextran on divalent cation accumulation in yeast. Evidence for an ion-selective extrusion pump for divalent cations.
    Theuvenet AP; Nieuwenhuis BJ; van de Mortel J; Borst-Pauwels GW
    Biochim Biophys Acta; 1986 Mar; 855(3):383-90. PubMed ID: 2418877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of stimulation of Ca2+ uptake by miconazole and ethidium bromide in yeasts: role of vacuoles in Ca2+ detoxification.
    Eilam Y; Lavi H; Grossowicz N
    Microbios; 1985; 44(177):51-66. PubMed ID: 2870412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apparent saturation kinetics of divalent cation uptake in yeast caused by a reduction in the surface potential.
    Borst-Pauwels GW; Theuvenet AP
    Biochim Biophys Acta; 1984 Apr; 771(2):171-6. PubMed ID: 6367824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake and accumulation of Mn2+ and Sr2+ in Saccharomyces cerevisiae.
    Nieuwenhuis BJ; Weijers CA; Borst-Pauwels GW
    Biochim Biophys Acta; 1981 Nov; 649(1):83-8. PubMed ID: 6458334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of inhibitors of plasma-membrane ATPase on potassium and calcium fluxes, membrane potential and proton motive force in the yeast Saccharomyces cerevisiae.
    Eilam Y; Lavi H; Grossowicz N
    Microbios; 1984; 41(165-166):177-89. PubMed ID: 6099460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divalent cation modulation of the ionic permeability of the synaptosomal plasma membrane.
    Kauppinen RA; Sihra TS; Nicholls DG
    Biochim Biophys Acta; 1986 Aug; 860(2):178-84. PubMed ID: 2427114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active extrusion of potassium in the yeast Saccharomyces cerevisiae induced by low concentrations of trifluoperazine.
    Eilam Y; Lavi H; Grossowicz N
    J Gen Microbiol; 1985 Oct; 131(10):2555-64. PubMed ID: 3906026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma membrane ATPase of yeast. Comparative inhibition studies of the purified and membrane-bound enzymes.
    Dufour JP; Boutry M; Goffeau A
    J Biol Chem; 1980 Jun; 255(12):5735-41. PubMed ID: 6445906
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of ATPase inhibitors on the proton pump of respiratory-deficient yeast.
    Serrano R
    Eur J Biochem; 1980 Apr; 105(2):419-24. PubMed ID: 6247154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode of action of miconazole on yeasts: inhibition of the mitochondrial ATPase.
    Portillo F; Gancedo C
    Eur J Biochem; 1984 Sep; 143(2):273-6. PubMed ID: 6236081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efflux of potassium induced by dio-9, a plasma membrane ATPase inhibitor in the yeast Schizosaccharomyces pombe.
    Foury F; Boutry M; Goffeau A
    J Biol Chem; 1977 Jul; 252(13):4577-83. PubMed ID: 141450
    [No Abstract]   [Full Text] [Related]  

  • 15. Possible energization of K+ accumulation into metabolizing yeast by the protonmotive force. Binding correction to be applied in the calculation of the yeast membrane potential from tetraphenylphosphonium distribution.
    Boxman AW; Dobbelmann J; Borst-Pauwels GW
    Biochim Biophys Acta; 1984 Apr; 772(1):51-7. PubMed ID: 6370307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissipation of membrane potential of Escherichia coli cells induced by macromolecular polylysine.
    Katsu T; Tsuchiya T; Fujita Y
    Biochem Biophys Res Commun; 1984 Jul; 122(1):401-6. PubMed ID: 6378203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a Dio-9-resistant strain of Saccharomyces cerevisiae.
    Roon RJ; Larimore FS; Meyer GM; Kreisle RA
    Arch Biochem Biophys; 1978 Jan; 185(1):142-50. PubMed ID: 23723
    [No Abstract]   [Full Text] [Related]  

  • 18. Transient hyperpolarization of yeast by glucose and ethanol.
    van de Mortel JB; Mulders D; Korthout H; Theuvenet AP; Borst-Pauwels GW
    Biochim Biophys Acta; 1988 Dec; 936(3):421-8. PubMed ID: 3058206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The plasma membrane electrical gradient (membrane potential) in Leishmania donovani promastigotes and amastigotes.
    Glaser TA; Utz GL; Mukkada AJ
    Mol Biochem Parasitol; 1992 Mar; 51(1):9-15. PubMed ID: 1533015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans.
    Prasad R; Höfer M
    Biochim Biophys Acta; 1986 Oct; 861(2):377-80. PubMed ID: 3530329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.