These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29455979)

  • 41. Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications.
    Hwang S; Lee H; Jeong YG; Choi C; Hwang I; Song S; Nam SY; Lee JH; Kim K
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430726
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vibrational energy transfer between carbon nanotubes and liquid water: a molecular dynamics study.
    Nelson TR; Chaban VV; Kalugin ON; Prezhdo OV
    J Phys Chem B; 2010 Apr; 114(13):4609-14. PubMed ID: 20230009
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biocompatible multi-walled carbon nanotube-chitosan-folic acid nanoparticle hybrids as GFP gene delivery materials.
    Liu X; Zhang Y; Ma D; Tang H; Tan L; Xie Q; Yao S
    Colloids Surf B Biointerfaces; 2013 Nov; 111():224-31. PubMed ID: 23831590
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SGO/SPES-based highly conducting polymer electrolyte membranes for fuel cell application.
    Gahlot S; Sharma PP; Kulshrestha V; Jha PK
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5595-601. PubMed ID: 24697540
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon Nanotube Nanocomposites with Highly Enhanced Strength and Conductivity for Flexible Electric Circuits.
    Hwang JY; Kim HS; Kim JH; Shin US; Lee SH
    Langmuir; 2015 Jul; 31(28):7844-51. PubMed ID: 26107468
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cellulose nanofiber-embedded sulfonated poly (ether sulfone) membranes for proton exchange membrane fuel cells.
    Xu X; Li R; Tang C; Wang H; Zhuang X; Liu Y; Kang W; Shi L
    Carbohydr Polym; 2018 Mar; 184():299-306. PubMed ID: 29352922
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A molecular dynamics study on Young's modulus and tribology of carbon nanotube reinforced styrene-butadiene rubber.
    Chawla R; Sharma S
    J Mol Model; 2018 Mar; 24(4):96. PubMed ID: 29552697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Domain size manipulation of perflouorinated polymer electrolytes by sulfonic acid-functionalized MWCNTs to enhance fuel cell performance.
    Kannan R; Parthasarathy M; Maraveedu SU; Kurungot S; Pillai VK
    Langmuir; 2009 Jul; 25(14):8299-305. PubMed ID: 19594190
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials.
    Fujigaya T; Nakashima N
    Adv Mater; 2013 Mar; 25(12):1666-81. PubMed ID: 23423836
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Review of Chitosan-Based Polymers as Proton Exchange Membranes and Roles of Chitosan-Supported Ionic Liquids.
    Rosli NAH; Loh KS; Wong WY; Yunus RM; Lee TK; Ahmad A; Chong ST
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963607
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications.
    Escorihuela J; Olvera-Mancilla J; Alexandrova L; Del Castillo LF; Compañ V
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32825111
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Manufacturing polymer/carbon nanotube composite using a novel direct process.
    Tran CD; Lucas S; Phillips DG; Randeniya LK; Baughman RH; Tran-Cong T
    Nanotechnology; 2011 Apr; 22(14):145302. PubMed ID: 21346301
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes.
    Chatterjee S; Lee MW; Woo SH
    Bioresour Technol; 2010 Mar; 101(6):1800-6. PubMed ID: 19962883
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functionalized carbon nanotube via distillation precipitation polymerization and its application in nafion-based composite membranes.
    He G; Zhao J; Hu S; Li L; Li Z; Li Y; Li Z; Wu H; Yang X; Jiang Z
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15291-301. PubMed ID: 25109828
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of Water Vapor Adsorption on Electrical Properties of Carbon Nanotube/Nanocrystalline Cellulose Composites.
    Safari S; van de Ven TG
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9483-9. PubMed ID: 26998641
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An Analytical Model of Interlaminar Fracture of Polymer Composite Reinforced by Carbon Fibres Grafted with Carbon Nanotubes.
    Xu F; Liu HY; Du X
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966717
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication and characterization of branched carbon nanostructures.
    Malik S; Nemoto Y; Guo H; Ariga K; Hill JP
    Beilstein J Nanotechnol; 2016; 7():1260-1266. PubMed ID: 27826499
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Collagen-carbon nanotube composite materials as scaffolds in tissue engineering.
    MacDonald RA; Laurenzi BF; Viswanathan G; Ajayan PM; Stegemann JP
    J Biomed Mater Res A; 2005 Sep; 74(3):489-96. PubMed ID: 15973695
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carbon nanotubes/heteroatom-doped carbon core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells.
    Sa YJ; Park C; Jeong HY; Park SH; Lee Z; Kim KT; Park GG; Joo SH
    Angew Chem Int Ed Engl; 2014 Apr; 53(16):4102-6. PubMed ID: 24554521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview.
    Pandey RP; Shukla G; Manohar M; Shahi VK
    Adv Colloid Interface Sci; 2017 Feb; 240():15-30. PubMed ID: 28024645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.