BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29456781)

  • 1. Functional Magnetic Resonance Imaging of the Domestic Dog: Research, Methodology, and Conceptual Issues.
    Thompkins AM; Deshpande G; Waggoner P; Katz JS
    Comp Cogn Behav Rev; 2016; 11():63-82. PubMed ID: 29456781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurobehavioral evidence for individual differences in canine cognitive control: an awake fMRI study.
    Cook PF; Spivak M; Berns G
    Anim Cogn; 2016 Sep; 19(5):867-78. PubMed ID: 27062134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two Separate Brain Networks for Predicting Trainability and Tracking Training-Related Plasticity in Working Dogs.
    Deshpande G; Zhao S; Waggoner P; Beyers R; Morrison E; Huynh N; Vodyanoy V; Denney TS; Katz JS
    Animals (Basel); 2024 Apr; 14(7):. PubMed ID: 38612321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domestic dogs as a comparative model for social neuroscience: Advances and challenges.
    Boch M; Huber L; Lamm C
    Neurosci Biobehav Rev; 2024 Jul; 162():105700. PubMed ID: 38710423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding dog cognition by functional magnetic resonance imaging.
    Huber L; Lamm C
    Learn Behav; 2017 Jun; 45(2):101-102. PubMed ID: 28236276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separate brain areas for processing human and dog faces as revealed by awake fMRI in dogs (Canis familiaris).
    Thompkins AM; Ramaiahgari B; Zhao S; Gotoor SSR; Waggoner P; Denney TS; Deshpande G; Katz JS
    Learn Behav; 2018 Dec; 46(4):561-573. PubMed ID: 30349971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why parametric measures are critical for understanding typical and atypical cognitive development.
    Arsalidou M; Im-Bolter N
    Brain Imaging Behav; 2017 Aug; 11(4):1214-1224. PubMed ID: 27696278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional MRI in awake unrestrained dogs.
    Berns GS; Brooks AM; Spivak M
    PLoS One; 2012; 7(5):e38027. PubMed ID: 22606363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Awake canine fMRI predicts dogs' preference for praise vs food.
    Cook PF; Prichard A; Spivak M; Berns GS
    Soc Cogn Affect Neurosci; 2016 Dec; 11(12):1853-1862. PubMed ID: 27521302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Canis familiaris As a Model for Non-Invasive Comparative Neuroscience.
    Bunford N; Andics A; Kis A; Miklósi Á; Gácsi M
    Trends Neurosci; 2017 Jul; 40(7):438-452. PubMed ID: 28571614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc Nanoparticles Enhance Brain Connectivity in the Canine Olfactory Network: Evidence From an fMRI Study in Unrestrained Awake Dogs.
    Ramaihgari B; Pustovyy OM; Waggoner P; Beyers RJ; Wildey C; Morrison E; Salibi N; Katz JS; Denney TS; Vodyanoy VJ; Deshpande G
    Front Vet Sci; 2018; 5():127. PubMed ID: 30013977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Awake fMRI reveals a specialized region in dog temporal cortex for face processing.
    Dilks DD; Cook P; Weiller SK; Berns HP; Spivak M; Berns GS
    PeerJ; 2015; 3():e1115. PubMed ID: 26290784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Selection of Assistance and Explosive Detection Dogs Using Cognitive Measures.
    MacLean EL; Hare B
    Front Vet Sci; 2018; 5():236. PubMed ID: 30338264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training pet dogs for eye-tracking and awake fMRI.
    Karl S; Boch M; Virányi Z; Lamm C; Huber L
    Behav Res Methods; 2020 Apr; 52(2):838-856. PubMed ID: 31313137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methodological and conceptual issues regarding occupational psychosocial coronary heart disease epidemiology.
    Burr H; Formazin M; Pohrt A
    Scand J Work Environ Health; 2016 May; 42(3):251-5. PubMed ID: 26960179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scent of the familiar: an fMRI study of canine brain responses to familiar and unfamiliar human and dog odors.
    Berns GS; Brooks AM; Spivak M
    Behav Processes; 2015 Jan; 110():37-46. PubMed ID: 24607363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A case for methodological overhaul and increased study of executive function in the domestic dog (Canis lupus familiaris).
    Olsen MR
    Anim Cogn; 2018 Mar; 21(2):175-195. PubMed ID: 29380086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistence and resistance to extinction in the domestic dog: Basic research and applications to canine training.
    Hall NJ
    Behav Processes; 2017 Aug; 141(Pt 1):67-74. PubMed ID: 28392243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One pair of hands is not like another: caudate BOLD response in dogs depends on signal source and canine temperament.
    Cook PF; Spivak M; Berns GS
    PeerJ; 2014; 2():e596. PubMed ID: 25289182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A detailed canine brain label map for neuroimaging analysis.
    Czeibert K; Andics A; Petneházy Ö; Kubinyi E
    Biol Futur; 2019 Apr; 70(2):112-120. PubMed ID: 34554420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.