These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 29457229)
1. Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer. Choi W; Oh JH; Riyahi S; Liu CJ; Jiang F; Chen W; White C; Rimner A; Mechalakos JG; Deasy JO; Lu W Med Phys; 2018 Apr; 45(4):1537-1549. PubMed ID: 29457229 [TBL] [Abstract][Full Text] [Related]
2. External validation of radiomics-based predictive models in low-dose CT screening for early lung cancer diagnosis. Garau N; Paganelli C; Summers P; Choi W; Alam S; Lu W; Fanciullo C; Bellomi M; Baroni G; Rampinelli C Med Phys; 2020 Sep; 47(9):4125-4136. PubMed ID: 32488865 [TBL] [Abstract][Full Text] [Related]
3. Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram. Liu A; Wang Z; Yang Y; Wang J; Dai X; Wang L; Lu Y; Xue F Cancer Commun (Lond); 2020 Jan; 40(1):16-24. PubMed ID: 32125097 [TBL] [Abstract][Full Text] [Related]
4. Radiomics-based machine learning in the differentiation of benign and malignant bowel wall thickening radiomics in bowel wall thickening. Bülbül HM; Burakgazi G; Kesimal U; Kaba E Jpn J Radiol; 2024 Aug; 42(8):872-879. PubMed ID: 38536559 [TBL] [Abstract][Full Text] [Related]
5. Quantifying local tumor morphological changes with Jacobian map for prediction of pathologic tumor response to chemo-radiotherapy in locally advanced esophageal cancer. Riyahi S; Choi W; Liu CJ; Zhong H; Wu AJ; Mechalakos JG; Lu W Phys Med Biol; 2018 Jul; 63(14):145020. PubMed ID: 29911659 [TBL] [Abstract][Full Text] [Related]
7. [Application of Radiomics in Classification and Prediction of Benign and Malignant Lung Tumors]. Zhou T; Zhu C; Shi F Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Feb; 44(2):113-117. PubMed ID: 32400982 [TBL] [Abstract][Full Text] [Related]
8. Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening. Tu SJ; Wang CW; Pan KT; Wu YC; Wu CT Phys Med Biol; 2018 Mar; 63(6):065005. PubMed ID: 29446758 [TBL] [Abstract][Full Text] [Related]
9. Prediction of single pulmonary nodule growth by CT radiomics and clinical features - a one-year follow-up study. Yang R; Hui D; Li X; Wang K; Li C; Li Z Front Oncol; 2022; 12():1034817. PubMed ID: 36387220 [TBL] [Abstract][Full Text] [Related]
11. Application of Radiomics in Predicting the Malignancy of Pulmonary Nodules in Different Sizes. Xu Y; Lu L; E LN; Lian W; Yang H; Schwartz LH; Yang ZH; Zhao B AJR Am J Roentgenol; 2019 Dec; 213(6):1213-1220. PubMed ID: 31557054 [No Abstract] [Full Text] [Related]
12. Comparison of ultra-low dose chest CT scanning protocols for the detection of pulmonary nodules: a phantom study. Milanese G; Silva M; Frauenfelder T; Eberhard M; Sabia F; Martini C; Marchianò A; Prokop M; Sverzellati N; Pastorino U Tumori; 2019 Oct; 105(5):394-403. PubMed ID: 31041885 [TBL] [Abstract][Full Text] [Related]
13. A combined non-enhanced CT radiomics and clinical variable machine learning model for differentiating benign and malignant sub-centimeter pulmonary solid nodules. Lin RY; Zheng YN; Lv FJ; Fu BJ; Li WJ; Liang ZR; Chu ZG Med Phys; 2023 May; 50(5):2835-2843. PubMed ID: 36810703 [TBL] [Abstract][Full Text] [Related]
14. Improved lung nodule diagnosis accuracy using lung CT images with uncertain class. Wang Z; Xin J; Sun P; Lin Z; Yao Y; Gao X Comput Methods Programs Biomed; 2018 Aug; 162():197-209. PubMed ID: 29903487 [TBL] [Abstract][Full Text] [Related]
15. Homology-based radiomic features for prediction of the prognosis of lung cancer based on CT-based radiomics. Kadoya N; Tanaka S; Kajikawa T; Tanabe S; Abe K; Nakajima Y; Yamamoto T; Takahashi N; Takeda K; Dobashi S; Takeda K; Nakane K; Jingu K Med Phys; 2020 Jun; 47(5):2197-2205. PubMed ID: 32096876 [TBL] [Abstract][Full Text] [Related]
16. Learning and depicting lobe-based radiomics feature for COPD Severity staging in low-dose CT images. Zhao M; Wu Y; Li Y; Zhang X; Xia S; Xu J; Chen R; Liang Z; Qi S BMC Pulm Med; 2024 Jun; 24(1):294. PubMed ID: 38915049 [TBL] [Abstract][Full Text] [Related]
17. Generative models improve radiomics performance in different tasks and different datasets: An experimental study. Chen J; Bermejo I; Dekker A; Wee L Phys Med; 2022 Jun; 98():11-17. PubMed ID: 35468494 [TBL] [Abstract][Full Text] [Related]
18. Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features. Hu X; Gong J; Zhou W; Li H; Wang S; Wei M; Peng W; Gu Y Phys Med Biol; 2021 Mar; 66(6):065015. PubMed ID: 33596552 [TBL] [Abstract][Full Text] [Related]
19. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features. Yin P; Mao N; Zhao C; Wu J; Sun C; Chen L; Hong N Eur Radiol; 2019 Apr; 29(4):1841-1847. PubMed ID: 30280245 [TBL] [Abstract][Full Text] [Related]
20. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]